
/ ANSIIISO9899-1990
I

for Programming Languages -
c

e- American National Standards Institute
11 West 42nd Street
New York, New York

10036

American
National
Standard

Approval of an American National Standard requires review by ANSI that the
requirements for due process, consensus, and other criteria for approval have
been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards
Review, substantial agreement has been reached by directly and materially
affected interests. Substantial agreement means much more than a simple
majority, but not necessarily unanimity. Consensus requires that all views and
objections be considered, and that a concerted effort be made toward their
resolution.

The use of American National Standards is completely voluntary; their existence
does not in any respect preclude anyone, whether he has approved the standards
or not, from manufacturing, marketing, purchasing, or using products, processes,
or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in
no circumstances give an interpretation of any American National Standard.
Moreover, no person shall have the right or authority to issue an interpretation of
an American National Standard in the name of the American National Standards
Institute. Requests for interpretations should be addressed to the secretariat or
sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or
withdrawn at any time. The procedures of the American National Standards
Institute require that action be taken periodically to reaffirm, revise, or withdraw
this standard. Purchasers of American National Standards may receive current
information on all standards by calling or writing the American National Standards
Institute.

Published by

American National Standards Institute
11 West 42nd Street, New York, New York 10036

Copyright 1990 by Information Technology Industry Council (ITI)
All rights reserved.

These materials are subject to copyright claims of International Standardization Organization (ISO),
American National Standards Institute (ANSI), and Information Technology Industry Council (ITI). Not for
resale. No part of this publication may be reproduced in any form, including an electronic retrieval system,
without the prior written permission of ITI. All requests pertaining to this standard should be submitted to
ITI, 1250 Eye Street NW, Washington, DC 20005.

Printed in the United States of America

ANSI/IS0 9899-l 990
(revision and redesignation of

ANSI X3.1 59-I 989)

American National Standard
for Programming Languages -

C

Secretariat

Computer and Business Equipment Manufacturers Association

Approved August 3,1992

American National Standards Institute, Inc.

ISO/lEC 9899.1990 (E,

Contents

I Scope

2 Normative references

. I .

7 Definitions and conventions

3 Compliance

5 Environment
51 Conceptual models

5.1 1 Translation environment .
5 1.2 Execution environments .

5.2 Environmental considerations . .
5.2.1 Character sets
5 3.7 .- - Character display semantics
5.23 Signals and interrupts . .
5.2.4 Environmental limits . .

................

................

................

................

................

................

.

................

................

6 Language .
6.1

6.2

63

Lexical elements
6 1.1 Keywords
6.1.2 Identifiers
6.1 3 Constants
6.14 String literals
6.1.5 Operators
6.1.6 Punctuators
6.1.7 Header names
6. I .8 Preprocessing numbers
6.1.9 Comments
Conversions ,
6 7.1 Arithmetic operands
63.2 Other operands
Expressions ... ,
6 3 I Primary expressions
6 3.2 Postfix operators
6.3.3 Unary operators
6.3 4 Cast operators
6 3.5 Multiplicative operators
6 3 6 Additive operators
6 3 7 Bitwise shift operators
6 3 8 Relational operators
6 3 9 Equality operators
6 3 IO Bituise AND operator
6 3 I I Bituise exclusive OR operator
6 3 12 Bitwise inclusive OR operator
6 3 13 Logical AND operator
6 3 II Logical OR operator
6 3. IS Conditional operator

I

I

2

3

s
5
5
6

IO
IO
12
I2
I2

IX
I8
19
19
25
30
31
32
32
33
33
34
34
36
38
39
39
43
45
46
46
48
48
49
50
SO
SO
51
51
51

6.4
65

6.6

6.7

6.8

69

7 Libr
71

7.2

7.3

74

6.3 16 Assignment operators . . .
6.3.17 Comma operator
Constant expressions
Declarations
65.1 Storage-class specifiers . .
6.52 Type specifiers
6 5.3 Type qualifiers
6.5 4 Declarators
6.5.5 Type names
6 5.6 Type definitions
6.5 7 Initialization
Statements
6 6 1 Labeled statements
6 6.2 Compound statement. or block
6.6 3 Expression and null statements
6 6.4 Selection statements . . .
6.6.5 Iteration statements . . .
6.6.6 Jump statements
External definitions
6.7 I Function definitions . . .
6.72 External object definitions .
Preprocessing directives
6.8.1 Conditional inclusion . . .
6.82 Source file inclusion . . .
6.8.3 Macro replacement
6.8 4 Line control
6.8.5 Error directive
6.8.6 Pragma directive
6.8.7 Null directive
6 X.8 Predefined macro names . .
Future language directions
6 Y I External names
692 Character escape sequence\ .
6 0.3 Storage-class specifiers . .
6.Y 3 Function declarators . . .
6 Y.5 Function definitions . . .
6 9.6 Array parameters

.

.

.

.

.

.

.

.

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

............... .

...............

...............

...............

...............

...............

.

.

.

.

.

.

.

...............

...............

...............

‘ary
introduction
7 I I Detinitiom of term\
7.1 2 Standard header5
7 I 3 Reserved identitierk
714 Errors<errno.h>
7 I 5 Limits <float. h> and <limits. h>
7. I .6 Common detinitionh <stddef . h> .
7.1.7 Use 01 library function\
Diagnostics <assert. h>
72.1 Program diagnostics
Character handling <ctype. h>
7.3 I Character testing function\
7 3 2 Character case mappIng tunctions . .
Localization <locale.h>
7 1.1 Locale control
7.1 2 Numeric tormattinp convention inquiry

............

............

............

............

............

............

............

............

............

............

............

............

............

.............

............

............

............

ISO/IEC 9899 1990 tE)

i ; _

5-I

ST

57
5x
5x
6-i
65
69
70
71
75
75
75
76
77
78
79
81
81
83
85
86
87
89
93
93
93
94
94
95
95
9s
95
95
9.5
9.5

96
96
96
96
97
97
98
9x
99

IO1
101
I02
IO1
104
106 --
107
108

111

ISO/IEC 9899: 1990 (E)

7.5

7.6

7.7

7.8

7.9

7.10

7.1 I

7.12

7 13

Mathematics 6th. h>
75.1 Treatment of error conditions
7.5.2 Trigonometric functions . 1
7.53 Hyperbolic functions
7.5.4 Exponential and logarithmic functions
7.5.5 Power functions
7.5.6 Nearest integer, absolute value. and remainder functions
Nonlocal jumps <set jeep. h>
7.6.1 Save calling environment
7.6.2 Restore calling environment
Signal handling <signal.h> - ...
7.7.1 Specify signal handling
7.7.2 Send signal
Variable arguments <stdarg. h>
7.8.1 Variable argument list access macros
Input/output <stdio. h>
7.9.1 Introduction
7.9.2 Streams
7.9.3 Files
7.9.4 Operations on files
7.9.5 File access functions
7.9.6 Formatted input/output functions
7.9.7 Character input/output functions
7.9.8 Direct input/output functions
7.9.9 File positioning functions
7.9. IO Error-handling functions
General utilities <etdlib.h>
7.10.1 String conversion functions
7.10.2 Pseudo-random sequence generation functions
7.10.3 Memory management functions
7.10.4 Communication with the environment
7.10.5 Searching and sorting utilities
7 10.6 Integer arithmetic functions
7.10.7 Multibyte character functions
7.10.8 Multibyte string functions
String handling <string. h>
7.1 1.1 String function conventions
7.1 I.2 Copying functions
7 1 1.3 Concatenation functions
7.11.4 Comparison functions
7.11.5 Search functions
7.1 1.6 Miscellaneous functions
Date and time <time. h>
7.12.1 Components of time
7.122 Time manipulation functions
7.12.3 Time conversion functions
Future library directions
7.13.1 Errors<errno.h>
7.13.2 Character handling <ctype. h>
7.13.3 Localization <locale.h>
7.13.4 Mathematics <math. h>
7.13.5 Signal handling <signal. h>
7.136 Input/output <stdio.h>
7.13.7 General utilities <stdlib. h>
7.13.8 String handling <string. h>

111
111
111
113
114
115
116
118
118
119
120
120
121
122
122
124
124
125
126
127
128
131
141
144
145
147
149
149
153
154
155
157
158
159
161
162
162
162
163
164
165
168
170
170
170
172
176
176
176
176
176
176
176
176
176

iv

Annexes

A Bibliography . 177

B Language syntax summary 178
B.1 Lexical grammar . 178
B.2 Phrase structure grammar 182
B.3 Preprocessing directives 187

C Sequence points . 189

D Library summary 190
D.1 Errors <errno. h> 190
D.2 Common definitions <stddef . h> 190
D.3 Diagnostics <assert. h> 190
D.4 Character handling <ctype . h> 190
D.5 Localization <locale. h> 190
D.6 Mathematics <math. h> 191
D.7 Nonlocal jumps <set jmp . h> 191
D.8 Signal handling <signal. h> 191
D.9 Variable arguments <stdarg . h> 192
D.10 Input/output <stdio. h> 192
D. I 1 General utilities <stdli.h . h> 194
D. 12 String handling <string. h> . 195
D. 13 Date and time <time. h> 195

E Implementation limits . 196

F Common warnings . 198

G Portability issues 199
G.1 Unspecified behavior 199
G.2 Undefined behavior 200
G.3 Implementation-defined behavior 204
G.4 Locale-specific behavior 207
G.5 Common extensions 208

Index . 210

ISO/IEC 9899: 1990 (E)

v

Foreword (This foreword is not part of American National Standard ANSI/IS0
9899-l 990. This document is identical to ISO/IEC 9899:1990 and the following four
paragraphs are the original foreword as it appeared in that document.)

IS0 (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of IS0 or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. IS0 and IEC technical committees collaborate in
fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with IS0 and IEC, also take part in the
work.

In the field of information technology, IS0 and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards adopt-
ed by the joint technical committee are circulated to national bodies for vot-
ing. Publication as an International Standard requires approval by at least
75% of the national bodies casting a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical
Committee ISO/IEC JTC 1, information Technology.

Annexes A, B, C, D, E, F and G are for information only.

Requests for interpretation, suggestions for improvement or addenda, or
defect reports are welcome. They should be sent to the X3 Secretariat,
Computer and Business Equipment Manufacturers Association, 1250 Eye
Street, NW, Suite 200, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by
Accredited Standards Committee on Information Processing Systems, X3.
Committee approval of the standard does not necessarily imply that all
committee members voted for its approval. At the time it approved this
standard, the X3 Committee had the following members:

(Position Vacant), Chairman
Donald C. Loughry, Vice-Chairman
Joanne Flanagan, Secretary

Organization Represented Name of Representative
Allen-Bradley Company . Ronald Reimer

Joe Lenner (Alt.)
American Library Association . Paul Peters
American Nuclear Society . Geraldine C. Main

Sally Hartzell (Alt.)
AMP, Inc . Edward Kelly

Edward Mikoski (Alt.)
Apple Computer, Inc. Karen Higginbottom
Association of the Institute for

Certification of Computer Professionals (AICCP)Kenneth Zemrowski
Eugene Dwyer (Ah.)

AT&T/NCR Corporation . Thomas W. Kern
Thomas F. Frost (Alt.)

Boeing Company . Catherine Howells
Andrea Vanosdoll (Alt.)

Pull HN Information Systems, Inc._............_............... David M. Taylor
C Jmpaq Computers_.................................._......... James Barnes

Keith Lucke (Alt.)
Digital Equipment Computer Users Society Stephen C. Jackson

Dr. Joseph King (Alt.)

vi

Organization Represented Name of Representative
Digital Equipment Corporation . Delbert Shoemaker

Kevin Lewis (Ah.)
Eastman Kodak Company . James Converse .

Michael Nier (Alt.)
Electronic Data Systems Corporation . Charles M. Durrett
General Services Administration . Douglas Arai

Larry L. Jackson (Ah.)
Guide International, Inc . Frank Kirshenbaum

Harold Kuneke (Alt.)
Hewlett-Packard . Donald C. Loughry
Hitachi America Ltd . John Neumann

Kei Yamashita fAlt.1
... Harold Zebrack‘ ’ Hughes Aircraft Company

IBM Corooration.. .. Robert H. Follett
Mary Anne Lawler (Alt.)

Lawrence Berkeley Laboratory..--..... Robert L. Fink
David F. Stevens (Alt.)

National Communications Systems Dennis Bodson
George W. White (Alt.)

National Institute of Standards and Technology..Rober t E. Rountree
Michael Hogan (Alt.)

Northern Telecom, inc.. ... Mel Woinsky
Subhash Pate1 (Ah.)

Omnicom, Inc. .. Harold C. Folts
Kathleen Dally (Alt.)

Open Systems Foundation (OSF). John S. Morris
Fritz Schulz (Alt.)

Recognition Tech Users Association Herbert P. Schantz
G. Edwin Hale (Alt.)

Share, inc.. ... Thomas B. Steel
Gary Ainsworth (Alt.)

Sony Corporation of America .. Michael Deese
Storage Technology Corporation.. Joseph S. Zajaczkowski

Samuel D. Cheatham (Ah.)
Sun Microsystems, Inc.. .. Scott Jameson
3M Company .. Paul D. Jahnke
Unisys Corporation ... Stephen Oksala

John Hill (Alt.)
U.S. Department of Defense ... Will iam Rinehuls

Thomas Bozek (Alt.)
U.S. Department of Energy ... Alton Cox

John Ruatto (Alt.)
U S West Corporation ... Gary Dempsey

Anislie Bates (Alt.)
Use, Inc.. .. Peter Epstein
Wang Laboratories, Inc. .. Steve Brody

Barbara Lurvey (Alt.)
Wintergreen Information Services.. John Wheeler
Xerox Corporation.. ... Roy Pierce

vii

ISO/IEC 9899.1990 (E)

Introduction
With the introduction of new devices and extended character sets, new features may be added to

this International Standard. Subclauses in the language and library clauses warn implementors and
programmers of usages which, though valid in themselves, may conflict with future additions.

Certain features are ohrolescerrt. which means that they may be considered for withdrawal in future
revisions of this International Standard. They ate retained because of their widespread use. but their
use in new implementations (for implementation features) or new programs (for language 16.91 or
library features (7.131) is discouraged.

This International Standard is divided into four major subdivisions:
- the introduction and preliminary elements;

- the characteristics of environments that translate and execute C programs;
- the language syntax. constraints, and semantics;
- the library facilities.

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
International Standard. References are used to refer to other related subclauses. A set of annexes
summarizes information contained in this International Standard. The introduction, the examples. the
footnotes. the references. and the annexes are not part of this International Standard.

The language clause (clause 7) is derived from “The C Reference Manual” (see annex A).

The library clause (clause 8) is based on the 1984 lusrlpwup Srundard (see annex A).

. . .
VIII

AMERICAN NATIONAL STANDARD ANSI/IS0 9899-l 990

American National Standard
for Program m ing Languages -
C

1 Scope
This International Standard specifies the form and establishes the interpretation of programs

written in the C programming language.’ It specifies

- the representation of C programs;

- the syntax and constraints of the C language;

- the semantic rules for interpreting C programs;

- the representation of input data to be processed by C programs;

- the representation of output data produced by C programs;

- the restrictions and limits imposed by a conforming implementation of C.

This International Standard does not specify

- the mechanism by which C programs are transformed for use by a data-processing system;

- the mechanism by which C programs are invoked for use by a data-processing system;

- the mechanism by which input data are transformed for use by a C program;

- the mechanism by which output data are transformed after being produced by a C program:

- the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

- all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2 Normative references
The following standards contain provisions which. through reference in this text, constitute

provisions of this international Standard. At the time of publication, the editions indicated were
valid All standards are subject to revision. and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated belou Members of IEC and IS0 maintain registers of currently valid
International Standards

IS0 646: 1983. Ir@nwGot? pt oc cssing - IS0 7-M coded character set for infortnurion
inrerchungc

IS0 42 17: 1987. Crtdcs jot ~Itc I cymwvl~u~iot~ of (urrencies and funds.

I Thih Imemational Standard i\ designed IO promote the portability of C programs among a varlbry of
data-processing sysrems II is intended for use by implementors and programmers II is accompanied by
a Rationale document that explains many of the decisions of rhe Technical Committee that produced it.

General , I

ISO/IEC 9899: 1990 (E)

3 Definitions and conventions
In this International Standard. “shall” is to be interpreted as a requirement on an

implementation or on a program: conversely. “shall not” is to be interpreted as a prohibition.

For the purposes of this International Standard. the following definitions apply. Other terms
are defined at their first appearance, indicated by iralic type. Terms explicitly detined in this
International Standard are not to be presumed to refer implicitly to similar terms detined
elsewhere. Terms not defined in this International Standard are to be interpreted according to
IS0 3381.

3.1 alignment A requirement that objects of a particular type be located on storage boundaries
with addresses that are particular multiples ot a byte address

3.2 argument. An expression in the comma-separated list bounded by the parentheses in a
function call expression. or a sequence of preprocessin g tokens in the comma-separated list
bounded by the parentheses in a function-like macro invocation. Also known as “actual
argument” or “actual parameter.”

3.3 bit The unit of data storage in the execution environment large enough to hold an object
that may have one of two values. It need not be possible to express the address of each
individual bit of an object.

3.4 byte: The unit of data storage large enough to hold any member of the basic character set of
the execution environment. It shall be possible to express the address of each individual byte of
an object uniquely. A byte is composed of a contiguous sequence of bits, the number of which is
implementation-defined. The least significant bit is called the Inw-order bit; the most significant
bit is called the high-order bit.

3.5 character: A bit representation that fits in a byte. The representation of each member of
the basic character set in both the source and execution environments shall fit in a byte.

3.6 constraints: Syntactic and semantic restrictions by which the exposition of language
elements is to be interpreted.

3.7 diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output

3.8 forward references: References to later subclauses of this International Standard that
contain additional information relevant to this subclause.

3.9 implementation A particular set of software. running in a particular translation
environment under particular control option\. that performs translation of programs for. and
supports execution of functions in. a particular execution environment

3.10 implementation-defined behavior Behavior. tar a correct program construct and correct
data. that depend5 on the characteristic5 ot the implementation and that each implementation shall
document

3.11 implementation limits. Restricrion\ impo\cd upon program\ by the implementation

3.12 locale-specific behavior Behavior that depends on local conventions of nationality.
culture. and language that each implementation shall document

3.13 multibyte character: A sequence of one or more byte5 representing a member of the
extended character set of either the source or the execution environment The extended character
set ih a superset ot the basic character set.

3.14 object. A region of data storage in rhe execution environment, the contents of which can
represent values. Except for bit-fields. objects are composed of contiguous sequences of one or
more bytes. the number. order, and encoding of which are either explicitly specifed or
implementation-detined When referenced. an object may be interpreted as having a particular
type. see 6 2.2 I.

7 General

ISO/lEC 0899 1000 (E)

3.15 parameter. An object declared as part of a function declaration or defnition that acquire.\
a value on entry to the function. or an identilier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro detinttion Also
known as “formal argument” or “formal parameter.”

3.16 undefined behavior: Behavior. upon use of a nonponable or erroneous program construct.
of erroneous data. or of indeterminately valued objects. for which this International Standard
imposes no requirements Permissible undefined behavior ranges from ignoring the situation
completely with unpredictable results. to behaving during translation or program execution in a
documented manner characteristic of the environment (with or without the issuance of a
diagnostic message). to terminating a translation or execution (with the issuance of a diagnostic
message)

If a “shall” or “shall not” requirement that appears outside of a constraint is violated. the
behavior is undefined Undefined behavior is otherwise indicated in this International Standard
by the words “undetined behavior” or by the omission of any explicit definition of behavior
There is no difterence in emphasis among these three: they all describe “behavior that is
undefined ‘*

3.17 unspecified behavior: Behavior, for a correct program construct and correct data, for
which this International Standard explicitly imposes no requirements

Examples

I. An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

2 An example of undefined behavior is the behavior on integer overflow.

3. An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

4. An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase English letters.

Forward references: bitwise shift operators (6 3 7). expressions (6 3). function calls (6.322).
the islower function (7 3.1 6). localization (7 4)

4 Compliance
A srr-icr!\ corlfornri~~ PWJXI’U~~ shall use only those features of the language and library

specified in this International Standard It shall not produce output dependent on any unspecitied.
undefined. or implementation-detined behavior. and shall not exceed any minimum
implementation limit

The two forms of (o~fornti,r,q in~/,/rnl~,lrurrr,~~ are hosted and freestanding A (r~fo,-nti,rg
/W\IN/ inr/‘/~~,,lc,/~tutio,l shall accept any strictly conforming program. A (o~~f~wn~ir7g J c~~srmtliq
i~rt~/mtotrotio~r shall accept any strictly conforming program in which the use of the features
specitied in the library clause (clause 7) is confined to the contents of the standard headers
<float.h>. <limits.h>. <.stdarg.h>. and <stddef .h> A conforming implementation
may have extensions (including additional library functions). provided they do not alter the
behavior of any strictly conforming program ’

A (o~flo/ lrri,r,q />~r~,v/unr is one that is acceptable to a conforming implementation ’

1 Thi\ implie\ that a conlonn~ng implementallon reserves no identitiers other than those explicitly reserved
in thih Intemarwnal Standard

7 Strictly contormmg program\ are intended to be maximally ponabie among conformmg implementations
Contormmg program5 ma> depend upon nonportable features of a conforming lmplementatlon .

General 3

. .

ISO/IEC 9899: 1990 (E)

An implementation shall be accompanied by a document that defines all implementation-
defined characteristics and all extensions.

Forward references: limits <float. h> and <limits. h> (7.1.5), variable arguments
<stdarg . h> (7.8), common definitions Xstddef . h> (7.1.6).

4 General

ISO/IEC 9899 1990 (E)

5 Environment
An implementation translates C source files and executes C programs In two data-processing-

system environments. which will be called the rr-anslarim en~irotmet~f and the C.MY ~fiorl
elrrirOllnze!lr in this International Standard Their characteristics define and constrain the results
of executing conforming C programs constructed according to the syntactic and semantic rules for
conforming implementations

Forward references: In the environment clause (clause 5). only a few of many possible forward
references have been noted

5.1 Conceptual models
51.1 Translation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in
units called SOUJ(e files in this International Standard. A source file together with all the headers
and source files included via the preprocessing directive #include. less any source lines
skipped by any of the conditional inclusion preprocessing directives. is called a tr-auslafin~~ unit
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers
have external linkage. manipulation of objects whose identifiers have external linkage. or
manipulation of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: conditional inc!usion (6.8.1). linkages of identifiers (6. I .2.2), source file
inclusion (6.8.2).

5.1.1.2 Translation phases
The precedence among the syntax rules of translation is specified by the following phases.*

1. Physical source file characters are mapped to the source character set (introducing new-line
characters for end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is
deleted. splicing physical source lines to form logical source lines. A source file that is not
empty shall end in a new-line character. which shall not be immediately preceded by a
backslash character.

3 The source tile is decomposed into preprocessing tokens” and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing
tohen or comment. Each comment is replaced by one space character. New-line characters
are retained Whether each nonempty sequence of white-space characters other than new-
line is retained or replaced by one space character is implementation-defined.

1 Preprocehhing directives are executed and macro invocations are expanded. A #include
preproceh4n.g directive causes the named header or source file to be processed from phase
I through phase 4. recurGvel\

-I Implcmentat~on\ mu\1 hcha\c a\ if thcsc wparate phase\ occur. even though many are typicall) folded
qether in practu

5 A\ described in 6 I. the proce\\ 01 diridinf a source tile’s characters into preprocessing tokens ih
comexl-dependem For cxamplc. WC’ the hauJlinp ot < within a #include preprocessing directive

.

Environment

ISOAEC 9899: 1990 (E)

5. Each source character’ set member and escape sequence in character constants and string
literals is converted to a member of the execution character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string literal
tokens are concatenated.

7. White-space characters separatin, 0 tokens are no longer significant. Each preprocessing
token is converted into a token. The resulting tokens are syntactically and semanticall!
analyzed and translated.

8 Ail external object and function references are resolved Library components are linked to
satisfy external references to functions and objects not defined in the current translation
Ail such translator output is collected into a program image uhii-h contains information
needed for execution in its execution environment. -

Forward references: lexical elements (6 I). preprocessin, u directives (6.8). trifraph sequences
(5.2.1.1)

5.1.1.3 Diagnostics
A conforming implementation shall produce at least one diagnostic message (identified in an

implementation-defined manner) for every translation unit that contains a violation of any syntax
rule or constraint. Diagnostic messages need not be produced in other circumstances.h

5.1.2 Execution environments
Two execution environments are defined. fivr.~rur~S~~~~ and hosted. In both cases, p~jgrunl

srarnrp occurs when a designated C function is called by the execution environment. All objects
in static storage shall be initialized (set to their initial values) before program startup. The
manner and timing of such initialization are otherwise unspecified. Pro~~nt reminarion returns
control to the execution environment.

Forward references: initialization (6.57).

5.1.2.1 Freestanding environment
In a freestanding environment (in which C program execution may take place without any

benetit of an operating system), the name and type of the function called at program startup are
implementation-detined There are otherwise no reserved external identitiers. Any library
tacilities available to a freestanding propram are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined,

5.1.2.2 Hosted environment
A hosted environment need not be provided. but shall conform to the following specifications

if present

5.1.2.2.1 Program startup

The function called a~ propram startup I\ named main The implementation declares no
prototype for thrs function. It can be detined v.ith no parameters

int main(void) { /*...*/ }

or with two parameters (referred to here ;I argc and argv. though any names may be used, as
the) are local to the tunction in which the) arc dcclarcd)

h The intent 15 that an implementation should ~dcnt~l! the nature 01. and where possible localize. each
violai1on Ot course. an implementatmn I\ tree IO produce an> number of diagnostics as long as a valid
program I\ htill correctI> rramlated II ma! al\o \ucLe\\full> translate an invalld program

6 Environment

ISO/IEC OX99 I990 (E J

int main(int argc, char *argv[]) { /*. . . */ 1

If they are defined. the parameters to the main function shall obey the following constraints

- The value of argc shall be nonnegative.

- argv [argc] shall be a null pointer.

- If the value of argc is greater than zero, the array members argv[O] through
argv [argc-l] inclusive shall contain pointers to strings. which are given implementation-
defined values by the host environment prior to program startup The intent is to supply to
the program information determined prior to program startup from elsewhere in the hosred
environment If the host environment is not capable of supplying strings with letters in both
uppercase and lowercase. the implementation shall ensure that the strings are received in
lowercase

- If the value of argc is greater than zero. the string pointed to by argv [0] represents the
/~r~,~r-cmr IKMIC. argv [0] [0] shall be the null character if the program name is not available
trom the host environment. If the value of argc is greater than one, the strings pointed to
by argv [l] through argv [argc-l] represent the program parmnerer s

- The parameters argc and arg-v and the strings pointed to by the argv array shall be
modifiable by the program. and retain their last-stored values between program startup and
program termination

5.1.2.2.2 Program execution

In a hosted environment. a program may use ail the functions, macros, type definitions. and
objects described in the library clause (clause 7).

5.1.2.2.3 Program termination

A return from the initial call to the main function is equivalent to calling the exit function
with the value returned by the main function as its argument. If the main function executes a
return that specifies no value. the termination status returned to the host environment is
undetined

Forward references: definition of terms (7 I I). the exit function (7.10.4.3)

5.1.2.3 Program execution

The semantic descriptions in thi\ International Standard describe the behavior of an abstract
machine in which issues of optimization are irrelevant

Accessing a volatile object. modilying an object, modifying a file, or calling a function that
doe\ any of those operations arc all tit/c eJc([\. which are changes in the state of the execution
envtronmcnt Evaluation of an expression may produce side effects At certain specified points
in the execution sequence called \I’L/I~‘HI c /~oirtr\. all side effects of previous evaluations shall be
complrtc and no side ettects ot suh\cqucnt evaluations shall have taken place

In the abstract machtnc. all expresston\ are evaluated as specified by the semantics An actual
implrmentatton need not evaluate part ol an expression if it can deduce that its value is not used
and that no needed side ellect\ arc produced (including any caused by calling a function or
accessing a volatile object)

When the processing oi the ab\tr;Ict machine is interrupted by receipt of a signal. only the
value\ 01 objects as ot the prcvmu\ sequence point may be relied on Objects that may be
modified between the previou\ scqucnce point and the next sequence point need not have
received their correct values yet

An Instance of each object with automatic storage duration is associated with each entry into m
its block Such an object exists and retains its last-stored value during the execution of the block
and while the block is suspended (hy a call of a function or receipt of a signal)

Environment

ISO/IEC 9899: 1990 (El

The least requirements on a conforming implementation are.

- At sequence points. volatile objects are stable in the sense that previous evaluations are
complete and subsequent evaluations have not yet occurred.

- At program termination. all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

- The input and output dynamics of interactive devices shall take place as specitied in 7.93.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible. to ensure that prompting messages actually appear prior to a program waiting for
input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

Examples

I An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point. the values of the actual objects would agree with those
specified by the abstract semantics. The keyword volatile would then be redundant.

Alternatively. an implementation might perform various optimizations within each
translation unit. such that the actual semantics would agree with the abstract semantics only
when making function calls across translation unit boundaries. In such an implementation.
at the time of each function entry and function return where the calling function and the
called function are in different translation units. the values of all externally linked objects
and of all objects accessible via pointers therein would agree with the abstract semantics.
Furthermore, at the time of each such function entry the values of the parameters of the
called function and of all objects accessible via pointers therein would agree with the
abstract semantics. In this type of implementation. objects referred to by interrupt service
routines activated bv the signal function would require explicit specification of
volatile storage. as well as other implementation-detined restrictions

2 In executing the fragment

char cl, c2;
/*. . .*/
cl = cl + c2;

the “integral promotions” require that the abstract machine promote the value of each
variable to int size and then add the two ints and truncate the sum. Provided the
addition 01 two chars can be done without creating an overflow exception. the actual
execution need only produce the same result. possibly omitting the promotions.

3 Similarly. in the fragment

float fl, f2;
double d;
/*...*/
fl = f2 * d;

the multiplication may be executed using hingle-preciston arithmetic if the implementation
can ascertain that the result would be the same a\ if it were executed using double-
precision arithmetic (f ?r example. if d were replaced by the constant 2.0. which has type
double) Alternatively. an operation involving only ints or floats may be executed
using double-precision operations if neither range nor precision is lost thereby.

4. TO illustrate the grouping behavior of expressions. in the following fragment

8 Environment

ISO/IEC 9899.1990 (E)

int a, b;
/*...*/
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus. the result of the sum ” (a
+ 32760)” is next added to b. and that result is then added to 5 which results in the
value assigned to a. On a machine in which overflows produce an exception and in which
the range of values representable by an int is i-32768.+32767]. the implementation
cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively. -32754 and - 15. the sum a + b would
produce an exception while the original expression would not; nor can the expression be
rewritten either as

a = ((a + 32765) + b);
or

a = (a + (b + 32765));

since the values for a and b might have been. respectively, 4 and -8 or - 17 and 12.
However on a machine in which overflows do not produce an exception and in which the
results of overflows are reversible, the above expression statement can be rewritten by the
implementation in any of the above ways because the same result will occur.

5. The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>
int sum;
char *p;
/*...*/
sum = sum * 10 - '0' + (*p++ = getchar(

the expression statement is grouped as if it were written as

sum = (((sum * 10) - '0') + ((*(p++)) = (getchar())

but the actual increment of p can occur at any time between the previous sequence point
and the next sequence point (the ;). and the call to getchar can occur at any point prior
to the need of its returned value

Fomard references: compound statement. or block (6.6.2). expressions (6.3). tiles (7.93).
sequence points (6.3. h 6). the signal tunction (7 7). type qualifiers (6 5.3)

Environment 9

ISO/IEC 9899: 1990 (E)

5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written, and the set interpreted in the execution environment. The values
of the members of the execution character set are implementation-defined. any additional
members beyond those required by this subclause are locale-specific.

In a character constant or string literal. members of the execution character set shall be
represented by corresponding members of the source character set or by esc.upr seqrtolc cs
consisting of the backslash \ followed by one or more characters. A byte with all bits set to 0.
called the null char-orrev. shall exist in the basic execution character set: it is used to terminate a .
character string literal.

Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the English alphabet

ABCDEFGEIJKLM
NOPQRS TUVWXYZ

the 26 lowercase letters of the English alphabet

abcdefghij klm
n 0 P 9 = = tuvwxyz

the 10 decimal digits

0123456789

the following 29 graphic characters

! I8 # % 6 ’ () * + , - . / :
; < = > ? t\lA-(I)-

the space character. and control characters representing horizontal tab, vertical tab. and form feed.
In both the source and execution basic character sets. the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous In source tiles.
there shall be some way of indicating the end of each line of text; this International Standard
treats such an end-of-line indicator as if it were a single new-line character. In the execution
character set. there shall be control characters representing alert. backspace, carriage return, and
new line. If any other characters are encountered in a source file (except in a character constant,
a string literal, a header name. a comment, or a preprocessing token that is never converted to a
token). the behavior is undefined.

Forward references: character constants (6. I .? 4). preprocessing directives (6.8). string literals
(6.1.1). comments (6 1.9).

5.2.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called rri,q~uph
scy~e~c rs’) are replaced with the corresponding single character

7 The trigraph sequences enable the input of character\ thar are not detined in the Invariant Code S,r as
described in IS0 636:19X3. which is a subser ot the seven-bit ASCII code set

10 Environment

ISO/IEC 9899.1990 (E)

??= #
??(1
??/ \
??) 1
??’ A
??< I
??! I
??> 1
??- -

No other trigraph sequences exist Each ? that does not begin one of the trigraphs listed above
is not changed.

Example

The following source line

printf("Eh???/n");

becomes (after replacement of the trigraph sequence ??/)

printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as fbr the source character set. For both character sets, the
following shall hold

- The single-byte characters defined in 52.1 shall be present.

- The presence, meaning, and representation of any additional members is locale-specific.

- A multibyte character may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an i~iria/ thiff sture and enters other implementation-defined
V/I@ sfufes when specific multibyte characters are encountered in the sequence. While in the
initial shitt state. all single-byte characters retain their usual interpretation and do not alter the
shift state The interpretation for subsequent bytes in the sequence is a function of the current
shift state.

- A byte with all bits zero shall be interpreted as a null character independent of shift state

- A byte with all bits zero shall not occur in the second or subsequent bytes of a multibyte
character

For the source character set. the following shall hold:

- A comment. \trms literal. character constant. or header name shall begin and end in the initial
shitt state

- A comment. string literal. character constant. or header name shall consist of a sequence of
valid multibytc character\

Environment

ISO/IEC 9899: 1990 (E)

5.2.2 Character display semantics
The acriiv position is that location on a display device where the next character output by the

fputc function would appear. The intent of writing a printable character (as defined by the
isprint function) to a display device is to display a graphic representation of that character at
the active position and then advance the active position to the next position on the current line.
The direction of writing is locale-specific. If the active position is at the final position of a line
(if there is one). the behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set
are intended to produce actions on display devices as follows:

\a (a/err) Produces an audible or visible alert The active position shall not be changed.

\b (harkspu~e) Moves the active position to the previous position on the current line. If the
active position is at the initial position of a line. the behavior is unspecilied.

\f (fol-nr feed) Moves the active position to the initial position at the start of the next logical
page.

\n (news line) Moves the active position to the initial position of the next line.

\r (carr-ia~e rvrrtr-n) Moves the active position to the initial position of the current line.

\t (horirorml tub) Moves the active position to the next horizontal tabulation position on the
current line. if the active position is at or past the last defined horizontal tabulation position.
the behavior is unspecified.

\v (i~erricul rub) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which
can be stored in a single char object. The external representations in a text file need not be
identical to the internal representations. and are outside the scope of this International Standard.

Forward references: the fputc function (7.9.7.3). the isprint function (7.3.1.7).

5.2.3 Signals and interrupts
Functions shall be implemented such that they may be interrupted at any time by a signal, or

may be called by a signal handler, or both. with no alteration to earlier, but still active,
invocations’ control flow (after the interruption). function return values, or objects with automatic
storage duration. All such objects shall be maintained outside the funrrion image (the
instructions that comprise the executable representation of a function) on a per-invocation basis.

The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duration.

52.4 Environmental limits
Both the translation and execution environments constrain the implementation of language

translators and libraries. The following summarizes the environmental limits on a conforming
implementation.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that contains
at least OI e instance of every one of the follo\sing limits:

X Implememaiion\ should avoid imposing fixed iranslation limits whenever possible.

1’ Environment

ISO/IEC 9899: 1990 (E)

- 15 nesting levels of compound statements. iteration control structures. and selection control
structures

- 8 nesting levels of conditional inclusion

- 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic. a
structure. a union. or an incomplete type in a declaration

- 31 nesting levels of parenthesized declarators within a full declarator

- 32 nesting levels of parenthesized expressions within a full expression

- 31 significant initial characters in an internal identifier or a macro name

- 6 significant initial characters in an external identifier

- 51 I external identifiers in one translation unit

- 127 identifiers with block scope declared in one block

- 1024 macro identifiers simultaneously defined in one translation unit

- 31 parameters in one function definition

- 31 arguments in one function call

- 3 I parameters in one macro definition

- 31 arguments in one macro invocation

- 509 characters in a logicai source line

- 509 characters in a character string literal or wide string literal (after concatenation)

- 32767 bytes in an object (in a hosted environment only)

- 8 nesting levels for #included files

- 257 case labels for a switch statement (excluding those for any nested switch
statements)

- 127 members in a single structure or union

- 127 enumeration constants in a single enumeration

- 15 levels of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits

A conforming implementation shall document all the limits specified in this subclause, which
shall be specitied in the headers <limits. h> and <float. h>.

5.2.4.2.1 Sizes of integral types <limits. h>

The values given below shall be replaced by constant expressions suitable for use in #if
preprocessing directives Moreover. except for CHAR-BIT and MB-LEN-F. the following
shall be replaced by expressions that have the same type as would an expresston that is an object
of the corresponding type converted according to the integral promotions. Their implementation-
delined values shall be equal or greater in magnitude (absolute value) to those shown. with the
same sign

- number of bits for smallest object that is not a bit-field (byte)
CUM-BIT 8

- minimum value for an object of type signed char
SCHAFL-MIN -127

- maximum value for an object of type signed char
SCBAR~MFU +127

Environment I3

ISO/IEC 9899: 1990 (El

- maximum value for an object of type unsigned char
UCEIAR~MAX 255

- minimum value for an object of type char
CBAR_MIN see helou~

- maximum value for an object of type char
CEiAlX-MlU we helow~

- maximum number of bytes in a multibyte character, for any supported locale
MB_LEN_MAx 1

- minimum value for an object of type short int
SHRT-MIN -32767

- maximum value for an object of type short int
SfLRT_MAx +32767

- maximum value for an object of type unsigned short int
USBRT_MAx 65535

- minimum value for an object of type int
INT MIN -32767

- maximum value for an object of type int
INT MAX +327 67

- maximum value for an object of type unsigned int
UINT-MM 65535

- minimum value for an object of type long int
LONG-MIN -2147483647

- maximum value for an object of type long int
LONG MAX +2147483647

- maximum value for an object of type unsigned long int
ITLONG-MAX 4294967295

If the value of an object of type char is treated as a signed integer when used in an
expression. the value of CHAR MIN shall be the same as that of SCBAR MIN and the value of
CHAR-MAX shall be the same E that of SCHAR-MAX. Otherwise. the value of CHAR MIN shall
be 0 and the value of CHAR MAX shall be the same as that of UCHAR_MAx.’ -

5.2.4.2.2 Characteristics of floating types <float. h>

The characteristics of floating types are detined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic I” The following parameters are used to define the
model for each tloating-point type:

10 The floatmp-point model is intended to claril> the description of each Roadn,.point characteristic and
does not require the Roarin@-poinl arithmetic ot the implementation to be identical

Environment

ISO/lEC 9899.1990 (E)

s sign (fl)
h base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum e,in and a maximum e,,,)

Ti
precision (the number of base-h digits in the significand)
nonnegative integers less than h (the significand digits)

A normalized floating-point number x’ (f, > 0 if x f 0) is defined by the following model.

.I = s X hr X f: fi x h-” . em,” 5 e I e,,,

Of the values in the <float. h> header. FLT-RADIX shall be a constant expression suitable
for use in #if preprocessing directives, all other values need not be constant expressions. All
except FLT-RADIX and FLT-ROUNDS have separate names for all three floating-point types
The floating-point model representation is provided for all values except FLT-ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT-ROUNDS.

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT-RODNDS characterize implementation-defined rounding behavior.

The values given in the following lisi shall be replaced by implementation-defined expressions
that shall be equal or greater in magnitude (absolute value) to those shown. with the same sign:
- radix of exponent representation, b

FLT-RADIX 2
- number of base-FLT-RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL-WWF-DIG
LDBL-WT-DIG

- number of decimal digits. 9. such that any floating-point number with 4 decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to

the y decimal digits. I if b is a power of IO
0 otherwise

FLT-DIG 6
DBL-DIG 10
LDBL-DIG 10

- minimum negative integer such that FLT RADIX raised to that power minus 1 is a
normalized floating-point number. on,,,,

FLT-MIN-EXP
DBL MIN EXP
LDB@Ii-EXP

- minimum negative integer such that IO raised to that power is in the range of normalized
floating-point numbers. log,,,b’“““-’ 1
FLT~~IN~lO~EXP -37
DBL-MN-lO_EXP -37
LDBL-MN-10 EXP -37

Environment

ISO/IEC 9899: 1990 (E)

- maximum integer such that FLT_RADIX raised to that power minus 1 is a representable lit-rite
floating-point number. c,,,

FLT-MAX-EXP
DBL-MU-EXP
LDBL-MAX-EXP

- maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers,

i
,og,,((l _ h-Pj x h[md-)

1
FLT_MAX_lO-EXP +37
DBL-M?U-lO_EXP +37
LDBL-MUJO-EXP +37

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or greater than those shown:

- maximum representable finite floating-point number, (I - /I-“) x h’“”

FLT-MAX lE+37
DBL-MAX lE+37
LDBL-MAX lE+37

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or less than those shown:
- the difference between 1 and the least value greater than 1 that is representable in the given

floating point type, bleP

FLT-EPSILON IE-5
DBL-EPSILON m-9
LDBL-EPSILON lE-9

- minimum normalized positive floating-point number, h”“‘“-’

FLT-MN IE-37
DBL MIN lE-37
LDBC-MIN lE-37

Examples

I. The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard. and the appropriate values in a <float . h>
header for type float:

~=.rxl6”x& x l6-” . -3111,1+37
1=I

FLT-RADIX
FLT-MANT-DIG
FLT-EPSILON
FLT-DIG
FLT MIN EXP
FLT-MIN-
FLTMIN 10 EXP
FLT-M?iX-EW
FLT-MAX-
FLT-M?U 10 EXP - --

16
6

9.53674316E-07F
6

-31
2.93873588E-39F

-38
+32

3.402823473+383
+38

16 Environment

ISO/IEC 9899 1990 (El

2. The following describes floating-point representations that also meei the requirements for
single-precision and double-precision normalized numbers in ANSI/IEEE 754- 1985.’ ’ and
the appropriate values in a <float. h> header for types float and double.

.\, = s x 2cxl;f,x2-1. -125 I P 2 +128

52
.\(/ = 7 x 2’ x c fL x 2-“, -1021 I e I +I024

!.=I

FLT RADIX 2
FLT-MANT DIG 24
FL+-EPSILON 1.192092903-071
FLTDIG 6
FLTMIN EXP -125
FLT-MIN- 1.175494353-381
FLTMIN 10 EXP -37
FLT-W-EXi! +128
FLT-W- 3.402823473+38F
FLT-MAX 10 EXP +38
DEL-MAN? DTG 53
DBLEPSIZON 2.2204460492503131E-16
DBL-DIG 15
DBLMIN EXP -1021
DBL-MIN- 2.2250738585072014E-308
DBLMIN 10 EXP -307
DBL-M?AX-Es +1024
DBL-MAX- 1.7976931348623157E+308
DBL+-lO_EXP +308

Forward references: conditional inclusion (6.8.1).

I I The Heating-point model in that standard sums power\ of h from zero. so the values of the exponent
hmns are one ICM than hhosn here

.

Environment I7

ISO/IEC 9899: 1990 (El

6 Language
In the syntax notation used in the language clause (clause 6). syntactic categories

(nonterminals) are indicated by italic type. and literal words and character set members
(terminals) by bold type. A colon () following a nonterminal introduces its definition.
Alternative definitions are listed on separate lines. except when prefaced by the words “one of.”
An optional symbol is indicated by the subscript “opt.” so that

{ e.~pressionop, }

indicates an optional expression enclosed in braces

6.1 Lexical elements
Syntax

token
Xeynwd
identifier
(onstant
string-literal
operator
punctuator

preprocessing-toXen .
header-name
identijin
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a
keyword. an identifier, a constant. a string literal. an operator. or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: Xeyuwds. idetltifieI v. c on~tut71~. w irlg literuls. operutors. and
puni trtutorc A preprocessiq toXe,I is the minimal lexical element of the language in translation
phases 3 through 6 The categories of preproceGng token are: hccldcr munes, idcnti’ers.
prepr-rx esvinq rwmhers. (hurff(Ii’) ~~o~~.sIutlI~. \IJ irrq liter u/5. c)l,rr ufot s. pw~cr~to~ s. and single
non-white-space characters that do not lexicalI> match the other preprocessing token categories.
It a ’ or a ” character matches the last categor!. the behavior is undefined Preprocessing tokens
can be separated by Lchita spun c. thih conlri\t\ ot comment\ (described later), or Mvhitc-spocr
(llulL/l ters (space. horizontal tab, new-line. vertical tab. and form-feed). or both. As described in
6 8. in certain circumstances during translation phase 3. white space (or the absence thereof)
serves a> more than preprocessing token qaration White space may appear within a
preprocessing tohen only as part of a header name or between the quotation characters in a
character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of character that could constitute a preprocessing
token

18 Language

ISO/lEC 9899 IWO (E)

Examples

I The program fragment 1Ex is parsed as a preprocessiq number token (one that is not a
valid floating or inteper constant token). even though a parse as the pair of preprocessing
tokens 1 and Ex micght produce a valid expression (for example. if Ex were 3 macro
defined as +l) Similarly. the program fragment 1El is parsed as a preprocessin&! number
(one that is a valid floatinS constant token). whether or not E is a macro name

2 The program fragment x+++++y is parsed as x ++ ++ + y. which violates a constraint on
increment operators. even though the parse x ++ + ++ y might yield a correct expression

Forward references: character constants (6.1.3.4). comments (6 I 9). expressjons (6 3). f ioatm~
constants (6.1.3 I). header names (6 I 7). macro replacement (6.8.3). posttix increment and
decrement operators (6.3.’ 4). prefix increment and decrement operators (6.3.3.1). preprocessing
directives (6.X). preprocessing numbers (6 1.8). string literais (6.1 4)

6.1.1 Keywords
Syntax

XCJ \z~ml one of
auto
break
case
char
const
continue
default
do

double int
else long
enum register
extern return
float short
for signed
got0 sizeof
if static

struct
switch
typedef
union
unsigned
void
volatile
while

Semantics

The above tokens (entirely in lowercase) are reserved (in translation phases 7 and 8) for use
as keywords. and shall not be used otherwise.

6.1 .Z Identifiers
Syntax

itlcnrifir~

wrrtli~ir

itlorr~fk~r tirmli,qir

irlcvirificv tli,qir

mulcliqir one ol
a b c de - f g hij klm
nopqrs tuvwxyz
A B C D E F G ?I I J K LM
NOPQRS TUVWXYZ

clrgir one of
0123456709

Description

An identitier is a quencc of nondigit characters (including the underscore and the
Iouercase and uppcrcasc Icttcrs) arid ~11~11s The tirst character shall be a nondipit character

Constraints

In translation phnscs 7 and X. an identitier shall not consist of the same sequence of characters
as a he) u ord

.

Lanfunge 19

ISO/IEC 9899: 1990 (E)

Semantics

An identifier denotes an object. a function. or one of the following entities that will be
described later: a tag or a member of a structure’. union. or enumeration: a typedef name: a label
name; a macro name: or a macro parameter. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here.
because prior to the semantic phase of propram translation any occurrences of macro names in
the source file are replaced by the preprocessing token sequences that constitute their macro
definitions.

There is no specific limit on the maximum length of an identifier.

Implementation limits

The implementation shall treat at least the first 31 characters of an internul name (a macro
name or an identifier that does not have external linkage) as significant. Corresponding lowercase
and uppercase letters are different. The implementation may further restrict the sipniticance of an
euernal name (an identifier ,that has external linkape) to six characters and may ignore
distinctions of alphabetical case for such names.” These limitations on identifiers are all
implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers
differ in a nonsignificant character, the behavior is undefined.

Forward references: linkages of identifiers (6. I 2.2). macro replacement (6.8.3).

6.1.2.1 Scopes of identifiers
An identifier is visible (i.e.. can be used) only within a region of program text called its

scope. There are four kinds of scopes: function. tile. block, and function prototype. (A fhction
prororype is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto
statement) anywhere in the function in which it appears. and is declared implicitly by its syntactic
appearance (followed by a : and a statement). Label names shall be unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specitirr that declares the identifier appears outside of
any block or list of parameters, the identifier ha.\ file scope. which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a
block or within the list of parameter declarations in a function definition. the identifier has h/otX
ROI~C~. which terminates at the) that closes the associated block. If the declarator or type
specifier that declares the identifier appears within the list of parameter declarations in a function
prototype (not part of a function detinirion). the identitier has function protor?pe scope. which
terminates a~ the end of the function declarator It an outer declaration of a lexically identical
identitier exists in the same name space. it i\ htdden until the current scope terminates. after
u hich it again becomes visible

Two identitiers have the same scope it and onI\ if their hopes terminate at the same point

Structure. uriion. and enumeration taps have XW~C that hefin\ just after the appearance of the
lag in a type specifier that declares the tag Each enumeration constant has scope that begins just
atter the appearance of its defining enumerator in an enumerator list Any other identifier has
scope that begins just after the completion ot it\ declarator

12 SW “luture language directions” (6 9.1)

30 Language

ISO/lEC 9899. I990 (El

Forward references: compound statement, or block (6.6.2). declarations (6.5). enumeration
specifiers (6.5.2.2). function calls (6.3 .2.3). function declarators (including prototypes) (6 5 3.3).
function definitions (6.7.1): the goto statement (6.6.6.1). labeled statements (6.6. I). name space5
of identifiers (6.1.2.3). scope of macro definitions (6X3.5). source file inclusion (6.8.2). tags
(6.5.2.3). type specifiers (6.52).

6.1.2.2 Linkages of identifiers

An identifier deckired in different scopes or in the same scope more than once can be made to
refer to the same object or function by a process called /I’&~E There are three kinds of linkage:
external, internal. and none.

In the set of translation units and libraries that constitutes an entire program, each-instance ot
a particular identilier with c~~r~rral IirQqe denotes the same object or function. Within one
translation unit. each instance of an identifier with ir~c~nal lir&~~e denotes the same object or
function. Identifiers with uo linAq~ denote unique entities.

If the declaration of a file scope identifier for an object or a function contains the storage-
class specifier static. the identitier has internal linkage.”

If the declaration of an identifier for an object or a function contains the storage-class
specifier extern. the identifer has the same linkage as any visible declaration of the identifier
with file scope. If there is no visible declaration with file scope. the identifier has external
linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is
determined exactly as if it were declared with the storage-class specifier extern. If the
declaration of an identifier for an object has file scope and no storage-class specifier, its linkage is
external.

The following identifiers have no linkage: an identifier declared to be anything other than an
object or a function: an identifier declared to be a function parameter: a block scope identifier for
an object declared without the storage-class specifier extern.

If. within a translation unit. the same identifier appears with both internal and external
linkage. the behavior is undefined

Forward references: compound statement. or block (6.6.2). declarations (6.5). expressions (6.3).
external definitions (6 7)

6.1.2.3 Name spaces of identifiers

It more than one declaration of a particular identifier is visible at any point in a translation
unit. the syntactic context disambiguates uses that refer to different entities. Thus. there are
separate IIUINC ~/RI(P\ for variouc categories of identifiers. as follows:

- /r~hcl MUM’\ tdihamhiguatcd h! the \!ntax of the label declaration and use):

- the fos\ of \tructurc\. union>. and enumerations (disambiguated by following any” of the
keyword\ struct. union. or enurn).

- the nrcJnflJcr-\ of \tructurc\ or union\. each structure or union has a separate name space for it5
members (di\ambiguatcd h! rhc ~ypc of the expression used to access the member via the .
or -> operator).

I 1 A tunclion dccl;~r~~ion can con13111 rhc ~torngc-clah\ specitier static only if it is a~ tile scope: set
65 I

1-t There i\ onI! one name ~XKX lor tag5 even though three are possible
.

Language 21

ISO/IEC 9899: 1990 (E)

- all other identifiers. called ordirzur-I id~fifi~/ F (declared in ordinary declarators or ah
enumeration constants).

Forward references: enumeration specifiers (6.5.-.- q 7). labeled statements (6.61). stmcture and
union specifiers (6.5.2.1). structure and union members (6.3.2.3). tags (6.5.2 3)

6.1.2.4 Storage durations of objects

An object has a stnr-age d~arior~ that determines irs lifetime. There are NO storage
durations: static and automatic.

An object whose identifier is declared with external or internal linkage. or with the storage-
class specifier static has sruric storu~~ tl~rorir~ For such an object. storage is reserved and
its stored value is initialized only once. prior to program startup. The object exists and retains its
last-stored value throughout the execution of the entire program.”

An object whose identifier is declared with no linkage and without the storage-class specitier
static has ulctonluric srorqe duroriorl . Storage is guaranteed to be reserved for a new
instance of such an object on each normal entry into the block with which it is associated. or on
a jump from outside the block to a labeled statement in the block or in an enclosed block. If an
initialization is specified for the value stored in the object. it is performed on each normal entry.
but not if the block is entered by a jump fo a labeled statement. Storage for the ob.ject is no
longer guaranteed fo be reserved when execution of the block ends in any way. (Entering an
enclosed block suspends but does not end execution of the enclosing block. Calling a function
suspends but does not end execution of the block containing the call.) The value of a pointer that
referred to an object with automatic storage duration that is no longer guaranteed to be reserved
is indeterminate.

Forward references: compound statement. or block (6.6.2). function calls (6.3.2.2). initialization
(6.5.7).

6.1.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the
rope of the expression used to access it. (An identifier declared to be an object is the simplest
such expression. the type is specified in the declaration of rhe identifier) Types are partitioned
into ohjecf ropes (types that describe objects). /iorcrirm I.V/WY (types that describe functions). and
incomplerc fxpes (types that describe objects but lack information needed to determine their
sizes).

An object declared as type char is large enough to store any member of the basic execution
character set. If a member of the required source character set enumerated in 5.2.1 is stored in a
char object. its value ih guaranteed fo be positive. If other quantities are stored in a char
object. the behavior is implementation-defined the values are treated as either signed or
nonnegative integer\

There are tour .u+~~~d i,lrrgcv !\7wr. deGFn3ted 3, signed char. short int. int. and
long int. (The signed integer and other t>pe\ ma) he designated in several additional ways. as
described in 65.2)

An object declared 31, type signed char occuplet rhe \ame amount of storage as a “plain”
char object. A “plain” int object ha\ the natural 4/c \uggested by the architecture of the
execution environment (large enough 10 contain an> value 111 the ranpe INT-MIN to INT MAX
as detined in the header <limits. h>). In the Iiht of signed integer rypes above, the ranye of
value\ of each type i:, a subrange of the value\ ot the next type in the list

I? In the case 01 3 volatile objecl. the last store muy nor he explicit in the program

22 Language

For each of the signed integer types. there is a corresponding (but different) rorsic~~/ /~t(‘:‘(‘,
~7~1 (designated \sith the keyword unsigned) that uses the same amount of storage (includtng
sign information) and has the same alignment requirements The ranpe of nonnegative values ot
a signed integer type is a subrange of the corresponding unsigned integer type. and the
representation of the same value in each type is the same lh A computation involving unsigned
operands can never overflou. because a result that cannot be represented b! the resulting
unsigned integer type is reduced modulo the number that is one greater thnn the largest value that
can be represented by the resulting unsipned integer type

There are three flrwri17g q~cs. designated as float. double. and long double The set
of values of the type float is a subset ot the set of values of the type double. the bet ot
values of the type double is a subset of the set of values of the type long double

The type char. the signed and unsigned integer types. and the floating types are collectively
called the hu.~k II~WY Even if the implementation detines two or more basic types to have the
same representation. they are nevertheless difterent types

The three types char, signed char. and unsigned char are collectively called the
1 ilU1 Ul fl’l’ rlpcs .

An P~~WVPW~~~U comprises a set of named integer constant values. Each distinct enumeration
constitutes a different ~VIIIII~CIU~C~ N/W

The void type comprises an empty set of values. it is an incomplete type that cannot be
completed.

Any number of deiced rv7x’s can be constructed from the object, function. and incomplete
types. as follows:

- An arrq type describes a contiguously allocated nonempty set of objects with a particular
member object type. called the element rype.” Array types are characterized by their element
type and by the number of elements in the array. An array type is said to be derived from its
element type. and if its element type is 7. the array type is sometimes called “array of 7’ ”
The construction of an array type from an element type is called “array type derivation.”

- A WMYW~ f\/~ describes a sequentially allocated nonempty set of member objects. each of
which has an optionally specitied name and possibly distinct type

- A ~orio~ !\‘IPC describes an overlapping nonempty set of member objects. each of which has an
optionally specitied name and possibly distinct type.

- A fimfio~~ W/X’ describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters A function type
is said to be derived tram its return type. and if its return type is ‘7. the function type is
sometimes calicd “tunction returning 7 ’ The construction of a function type trdm a return
type is called “lunctnm type derivation ”

- A poi~~r~/ II/R’ ma\ be derived from a function type. an object type. or an incomplete type.
called the I c,/c,r (‘/I(c(/ r\/‘c’ A pointer type describes an object whose value provides a
reterence to a11 enter! ol the rclcrenccd type A pointer type derived from the referenced type
7 is sometimes called “polntcr to 7‘ ‘* The construction ot a pointer type from a referenced
type is called “po~ntcr type derivation .

16 The same represcntai1on lrntl ~tl~gnrncrn requlrcmcnts arc meant to imply mterchangeabilit! 3, arpumenrs
to Iunctions return \:~Iue\ Ironi IunLilons. and members 01 unions

17 Smcc oh~ecl I!pe\ tlo noI Include mcomplek 1)~s. an array 01 incomplete type cilnnot he constructed .

Language 73

ISO/IEC 9899: 1990 (E)

These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types. and the enumerated types are
collectively called integral types. The representations of integral types shall define values by use
of a pure binary numeration system.‘* The representations of floating types are unspecified

Integral and floating types are collectively called arithnletit ppes. Arithmetic types and
pointer types are collectively called scalur rypes. Array and structure types are collectively called
aggregate gpes . I9

An array type of unknown size is an incomplete type. It is completed. for an identifier of that
type. by specifying the size ih a later declaration (with internal or external linkage). A structure
or union type of unknown content (as described in 6.523) is an incomplete type. It is
completed. for all declarations of that type. by declaring the same structure or union tag with its
defining content later in the same scope.

Array. function. and pointer types are collectively called dei-i~ed c/ec%~uro~ rxpes. A
declaruror ?\pe deriratinrl from a type 7 is the construction of a derived declarator type from T
by the application of an array-type. a function-type. or a pointer-type derivation to T.

A type is characterized by its rype c~~gr~~. which is either the outermost derivation of a
derived type (as noted above in the construction of derived types), or the type itself if the type
consists of no derived types,

Any type so far mentioned is an wuprulijiad type. Each unqualified type has three
corresponding quuli’ed versions of its type:“’ a c onst-qualified version, a solatile-qualified
version. and a version having both qualifications. The qualified or unqualified versions of a type
are distinct types that belong to the same type category and have the same representation and
alignment requirements.lh A derived type is not qualified by the qualifiers (if any) of the type
from which it is derived.

A pointer to void shall have the same representation and alignment requirements as a pointer
to a character type. Similarly. pointers to qualified or unqualified versions of compatible types
shall have the same representation and alignment requirements. ” Pointers to other types need not
have the same representation or alignment requirements.

Examples

I. The type designated as "float *” has type “pointer to float." Its type category is
pointer. not a floating type. The const-qualified version of this type is designated as
"float * const” whereas the type designated as "const float *” is not a qualified
type - its type is “pointer to const-qualilied float" and is a pointer to a qualitied type.

2. The type designated as “struct tag (* [5]) (float) " has type “array of pointer to
function returning struct tag " The array has length five and the function has a single
parameter of type float. Its type category is array.

Forward references: character constants (6 1.3 4). compatible type and composite type (6.126).
declarations (65). tags (6.523). type qualitiers (62.3).

IX A positional representarion for integer\ lhar IN\ the binary digits 0 and I. in which the values
represented b\ succehhive bits are add~~~\c. hcgm uith I. and are multiplied by successive inlegral
power5 01 2. except perhaps rhe bil with the hlghc\r position
Die riomn \ /in /frfornlurrr~fl Pf O(rrtin~ \\.S/CWl\ .)

(Adapted from the Anwric WI Nariwwl

IY Note thal aggregate type does not include umon type because an object with union type can only contain
one member at a time

20 See 6 S 3 regarding qualitied arm> and function ~)pe\

23 Language

ISO/lEC 9899.1990 (E)

6.1.2.6 Compatible type and composite type

Two types have comparihle type if their types are the same. Additional rules for determining
whether two types are compatible are described in 6.5., 3 for type specifiers, in 65.3 for type
qualifiers, and in 6.5.4 for declarators.” Moreover. two structure, union. or enumeration types
declared in separate translation units are compatible if they have the same number of members.
the same member names. and compatible member types: for two structures. the members shall be
in the same order: for two structures or unions, the bit-fields shall have the same widths: for two
enumerations. the members shall have the same values.

Ail declarations that refer to the same object or function shall have compatible type.
otherwise. the behavior is undefined.

A tonrposite rvpe can be constructed from two types that are compatible: It is a type that is
compatible with both of the two types and satisfies the following conditions.
- If one type is an array of known size. the composite type is an array of that size
- If only one type is a function type with a parameter type list (a function prototype), the

composite type is a function prototype with the parameter type list.
- If both types are function types with parameter type lists, the type of each parameter in the

composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as another
declaration for that identifier, the type of the identifier becomes the composite type.

Example

Given the following two file scope declarations:

int f (int (*) 0, double (*) 131) ;
int f(int (*) (char *), double (*)[I);

The resulting composite type for the function is:

int f(int (*) (char *), double (*)[3]);

Forward references: declarators (6.5 4). enumeration specifiers (6.5.2.2). structure and union
specifiers (6.5.2. I). type definitions (6.5.6). type qualifiers (6.5.3). type specifiers (6.5.2).

6.1.3 Constants

Syntax

Constraints

The value of a constant shall be in the range of representable values for its type.

21 Two types need not be identical IO be compatible

Language 25

ISO/IEC 9899: 1990 (E)

Semantics

Each constant has a type. determined by its form and value. as detailed later.

6.1.3.1 Floating constants

Syntax

fractional-constant
digit-seqtrence opt *

digit-sequer~c c
digit-sequence

exponent-part.
e sign
E sign

opr digit-sequence
opr digit-sequence

sign one of
+ -

digit- reqirence
digit
digit-sequence digit

floating-su$ix. one of
flF L

Description

A floating constant has a signi’cand part that may be followed by an esponent part and a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part. followed by a period (. 1, followed by a digit
sequence representing the fraction part The components of the exponent pan are an e or E
followed by an exponent consisting of an optionally signed digit sequence. Either the whole-
number part or the fraction pan shall be present: either the period or the exponent part shall be
present.

Semantics

The sipniticand part is interpreted as a decimal rational number: the digit sequence in the
exponent part is interpreted as a decimal integer. The exponent indicates the power of IO by
which the signilicand part is to be scaled If the \caled value is in the range of representable
values (for it\ type) the result is either the nearest representable value. or the larger or smaller
representable \ slur immediately adjacent IO the nearest representable value. chosen in an
implementation-detined manner.

An unsuttixed floating constant ha4 ~ypc‘ double If suffixed by the letter f or F'. it has type
float. If suttixed by the letter 1 or L. it ha\ t)pc long double.

6.1.3.2 integer constants

Syntax

Language

ISO/lEC 9899 1990 (E)

decinlal-c nnsram
t7otrzero-digit
decinlal-c ot7sfat7t digit

oc ral-cnr7srat7t octal-digit

he utdec in7al-c~o~7srut7r
Ox 17ewdec in7al-digit
OX j7e\adecin7al-digi/
hq.wdet in7ul-c ot7stat71 he.\adec intal-digir

t7or7:e,o-digit one of
123456789

oc ml-digit one of
012 3 4 5 6 7

l7c1adec in7al-digit one of
0123456789
abcdef
ABCDEF

unsigned-@ix long-su$i.v
VI long-s7dfi.k unsigt7ed-s$f7.~opr

m.~i~~t7ed-.wffi.~ one of
u u

long-s@r~ one of
1 L

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a
pretix that specities its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits
An octal constant consists of the pretix 0 optionally followed by a sequence of the digits 0
through 7 only. A hexadecimal constant consists of the prefix Ox or OX followed by a sequence
of the decimal digits and the letters a (or A) through f (or F) with values IO through I5
respectively.

Semantics

The value ot a decimal constant is computed base IO; that of an octal constant. base 8. that of
a hexadecimal constant. base Ih The lexically tirst digit is the most signiticant.

The type ot an integer constant is the tirst ot the corresponding list in which its value can be
represented. Unsuffixed decimal int. long int, unsigned long int: unsuftixed octal or
hexadecimal: int. unsigned int. long int, unsigned long int: suffixed by the letrer
u or U: unsigned int. unsigned long int: suffixed by the letter 1 or L long int.
unsigned long int. suttixed by both the letters u or U and 1 or L: unsigned long int

Language 27

ISO/IEC 9899: 1990 (E)

6.1.3.3 Enumeration constants

Syntax

enumeration-constant
identifrn

Semantics

An identifier declared as an enumeration constant has type int.

Forward references: enumeration Specifiers (6.5.1.2).

6.1.3.4 Character constants

Syntax

character-constant:
I (-char-sequence’
L’ c-char-sequence’

c-char-sequence
c-char
c-char-sequence c-char

c-char
any member of the source character set except

the single-quote ’ . backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence. one of
\’ \” \? \\
\a \b \f \n \r \t \v

octal-escape-sequence.
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit oc tal-digit

hexadecimal-est ape-sequence
\x hexadecimal-digit
hcxadel imul-est ape-seyrtou c he wde~ in&-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed in
single-quotes. as in ’ x’ or ’ ab’ A wide character constant is the same. except prefixed by the
letter L. With a few exceptions detailed later. the elements of the sequence are any members of
the source character set: they are mapped in an implementation-defined manner to members of the
execution character set.

The single-quote ’ , the double-quote I’. the question-mark ?. the backslash \, and arbitrary
integral values. are representable according to the tollowing table of escape sequencec:

Language

ISO/IEC 9899: 1990 (E)

single-quote ’ \’
double-quote ” \”
question-mark ? \?
backslash \ \\
octal integer \octul digits
hexadecimal integer \xhesadecimal digits

The double-quote II and question-mark ? are representable either by themselves or by the
escape sequences \ 1’ and \?. respectively. but the single-quote ’ and the backslash \ shall be
represented. respectively. by the escape sequences \’ and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of
the construction of a single character for an .integer character constant or of a single wide
character for a wide character constant. The numerical value of the octal integer so formed
specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer character
constant or of a single wide character for a wide character constant. The numerical value of the
hexadecimal integer so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition. certain nongraphic characters are representable by escape sequences consisting of
the backslash \ followed by a lowercase letter: \a, \b, \f, \n, \r, \t. and \v.** If any other
escape sequence is encountered, the behavior is undefined.*’

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of representable
values for the type unsigned char for an integer character constant, or the unsigned type
corresponding to wchar-t for a wide character constant.

Semantics

An integer character constant has type int The value of an integer character constant
containing a single character that maps into a member of the basic execution character set is the
numerical value of the representation of the mapped character interpreted as an integer. The
value of an integer character constant containing more than one character, or containing a
character or escape sequence not represented in the basic execution character set. is
implementation-defined. If an integer character constant contains a single character or escape
sequence. its value is the one that results when an object with type char whose value is that of
the single character or escape sequence is converted to type int.

A wide character constant has type wchar-t. an integral type defined in the <stddef. h>
header. The value of a uide character constant containing a single multibyte character that maps
into a member of the extended execution character set is the nide chaws ter (code) corresponding
to that multibyte character. as defined by the mbtowc function. with an implementation-defined
current locale The value of a wide character constant containing more than one multibyte
character. or containing a multibyte character or escape sequence not represented in the extended
execution character set. is implementation-defined.

22 The semannc\ of [hex characters were discussed in 5 7 2

27 See “tuturc language direclions” (6 9.2)

Language 29

ISO/IEC 9899: 1990 (El

Examples

1. The construction ’ \O’ is commonly used to represent the null character

2 Consider implementations that use two’s-complement representation for integers and eight
bits for objects that have type char. In an implementation in which type char has the
same range of values as signed char. the integer character constant ’ \xFF' has the
value - I: if type char has the same range of values as unsigned char. the character
constant ’ \xFF’ has the value +255

3 Even if eight bits are used for objects that have type char. the construction ’ \x123’
specifies an integer character constant containin, 0 only one character (The value of this
single-character integer character constant is implementation-defined and violates the above .
constraint.) To specify an integer character constant containing the two characters whose
values are 0x12 and ’ 3’. the construction ’ \0223’ may be used. since a hexadecimal
escape sequence is terminated only by a nonhexadecimal character. (The value of this
two-character integer character constant is implementation-defined also.)

4. Even if 12 or more bits are used for objects that have type wchar-t. the construction
L' \1234’ specifies the implementation-defined value that results from the combination of
the values 0123 and ’ 4’.

Forward references: characters and integers (6.3.1.1) common definitions <stddef . h>
(7.1.6). the mbtowc function (7.10.7.2).

6.1.4 String literals
Syntax

strittg-literal
“s-char-sequence ”
L”s-char--sequenc?t ”

OP’
s-chm-sequent e

5-t hur

s-c hut--scqtretice s-rhut

any member of the source character set except
the double-quote “. backslash \. or new-line character

c wape- reyitenc e

Description

A character string literal is a sequence of lero or more multibyte characters enclosed in
double-quotes. as in “xyz”. A wide string literal is the same. except prefixed by the letter L

The same considerations apply to each element of the sequence in a character string literal or
a wide string literal as if it were in an integer character constant or a wide character constant.
except that the single-quote ’ is representable either by itself or by the escape sequence \‘, but
the double-quote ” shall be represented by the escape sequence \”

Semantics

In translation phase 6. the multibyte character sequences specified by any sequence of
adjacent character string literal tokens. or adjacent uide string literal tokens. are concatenated into
a single multibyte character sequence It a character string literal token is adjacent to a wide
str lg literal token. the behavior is undefined

30 Language

ISO/IEC 9899 1990 (E)

In translation phase 7. a byte or code of value zero is appended to each multibyte character
sequence that result5 from a string literal or literals.” The multibyte character sequence is then
used to initialize an nrrq of static storage duration and length just sufticient to contain the
sequence For character string literals. the array elements have type char. and are initialized
ufith the individual bytes of the multibyte character sequence: for wide string literals, the arra!
elements have type wchar-t. and are initialized with the sequence of hide character5
corresponding to the multibyte character sequence

Identical string literais of either form need not be distinct. If the program attempt5 to modit\
a string literal of either form. the behavior is undefined

Example _’

Thi, pair of adjacent character string literals

“\x12” “3”

produces a single character strin, 0 literal containing the two characters whose values are \x12
and ’ 3’ . because escape sequences are converted into single members of the execution character
set just prior to adjacent string literal concatenation.

Forward references: common detinitions Cstddef . h> (7. I .6).

6.1.5 Operators

Syntax

fpwtor one of

r 1 (1 . ->
++ -- 6 * + - .” ! sizeof
/ % << >> < > <= >= == != A 1 hh 11
? :
= *= /= %= += -= <<= >>= b= A= = I
, # ##

Constraints

The operator5 [1. () . and ? : shall occur in pairs. possibly separated by expressions. The
operators # and ## shall occur in macro-detining preprocessing directives only.

Semantics

An operator specitk an operation to be performed (an ewluation) that yields a value. or
yield5 a designator. or produce5 a hide eftect. or a combination thereof. An rq~urtd is an entity
on u hich an operator acts

Forward references: c\prc\\lon\ (6 3). macro replacement (6.8.3)

2~ .A characlcr \trlnf lltcr31 need not hc 2 \trmg thee 7 I I). because a null character may be embedded in it
h:\ ;I \O c\capc xcqucn~c

Language 31

- . . - - - - ._ - - - - - -_ - - . 1 -1 . “_ _ _ - - -_ I . _ . _ . _ - L I - - I_ -_ - - . - - . ‘_._ a ; , . -“__Iva_a. _ - . ~ccLL__ i - - _ _ . . 1 \ _& ._ . ~ _

IS O /IE C 9899 : 1 9 9 0 (E)

6 .1 .6 P u n c tu a to rs
Syn tax

punc tua to r o n e of
[I () { 1 * , : = ; . . . #

Const ra in ts

The punctua to rs [1. () , a n d { 1 sha l l occu r (after t rans la t ion p hase 4) i n pa i rs . poss ib l \
sepa ra ted by exp ress ions , dec la ra t ions. o r statements. T he punctua to r # sha l l occu r i n
p r ep rocess i ng d i rect ives on ly.

S e m a n tics

A punctua to r is a symbo l that h as i n dependen t syntact ic a n d seman t i c s ign i f i cance but d oes
not spec i fy a n ope ra t i on to b e pe r f o rmed that y ie lds a va lue . Depend i n g o n context. the s a m e
symbo l m a y a l so rep resen t a n ope ra to r o r par t of a n opera to r .

Fo rwa r d re fe rences: exp ress i ons (6.3). dec la ra t i ons (6.5). p r ep rocess i ng d i rect ives (6.X) .
s ta tements (6.6).

6 .1 .7 H e a d e r n a m e s
Syn tax

h eade r - n ame .
< h - c ha r - s equence>
“q - cha r - sequence”

h -cha r - sequen t e.
h - cha r
h - cha r - sequence h -cha r

h -char .
any m e m b e r of the sou rce cha rac te r set except

the new- l i ne cha rac te r a n d >

y-c.hor- -seqtrettc.e:
y -cha r
y -cha r -sequen t e y -cha r

any m e m b e r of the sou rce cha rac te r set except
the new- l i ne cha rac te r a n d *I

Const ra in ts

Heade r n a m e p rep rocess i ng token5 sha l l on l ! a p pea r w i th in a # i n c l u d e p rep rocess i ng
d i rect ive

S e m a n tics

The sequences in bo th fo rms of h e ade r n ame \ a rc m a p p e d in a n imp lemen ta t i on -de f i ned
m a n n e r to h eade r s o r ex te rna l sou rce t i le n ame \ a, \pcc ihed i n 6 X .2

If the cha rac te rs ‘. \. ‘I, o r /* occu r i n the q u e m e be tween the < a n d > de l imi te rs . the
behav i o r is unde t i ned . S im i la r l y . if the cha rac te rs ’ . \.
” de l im i te r> . the behav i o r is unde f i ned ”

o r /* occu r i n the s equence be tween the

3 Thw. sequence . \ of cha rac te r s that r ex rnb l e e x ~pc wqucnc rs cause u n d e f i n e d behav i o r

3 2 L a n g u a g e

ISO/IEC 9899 1990 (E)

Example

The following sequence.of characters:

Ox3<l/a.h>le2
#include <l/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token
delimited by a { on the left and a } on the right)

{Ox3H<H1H/lIaH. HhJI>Hle21
{#}{in&lude} {<l/a.h>}
{#>{define} {const}{.}{member}{@}{$}

Forward references: source tile inclusion (6.8.2).

6.1.8 Preprocessing numbers
Syntax

pp-nmhef
digif
. digit

pp-rumher- digit
pp-tlrmlher rmldigit
pp-nwnher e sign
pp-nunher E sign
pp-riumher .

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may be
followed by letters. underscores. digits, periods, and e+, e-. E+. or E- character sequences.

Preprocessing number token5 lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value: it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer constant
token.

6.1.9 Comments
Except within a character constanr. a string literal. or a comment. the characters /* introduce

a comment The content\ ot ;I comment are examined only to identify multibyte characters and
to tind rhe characters */ th;u renninate II “’

Language 33

ISO/IEC 9899: 1990 (E)

6.2 Conversions
Several operators convert operand values from one type to another automatically. This

subclause specifies the result required from such an implic if cnrwnion. as well as those that
result from a cast operation (an expiicif c on~wsiou L The list in 6.2.1.5 summarizes the
conversions performed by most ordinary operators. it is supplemented as required bq the
discussion of each operator in 6.3.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.3.4)

6.2.1 Arithmetic operands

6.2.1.1 Characters and integers

A char, a short int. or an int bit-field. or their signed or unsigned varieties. or an
enumeration type. may be used in an expression wherever an int or unsigned int may be
used If an int can represent all values of the original type. the value is converted to an inf;
otherwise, it is converted to an unsigned int. These are called the integral p~wnotions.”
All other arithmetic types are unchanged by the integral promotions.

The integral promotions preserve value including sign. As discussed earlier, whether a
“plain” char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.5. 1.2). structure and union specifiers (6.521).

6.2.1.2 Signed and unsigned integers
When a value with integral type is converted to another integral type, if the value can be

represented by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater size, if the
value of the signed integer is nonnegative. its value is unchanged. Otherwise: if the unsigned
integer has greater size, the signed integer is first promoted to the signed integer corresponding to
the unsigned integer: the value is converted to unsigned by adding to it one greater than the
largest number that can be represented in the unsigned integer type ”

When a value with integral type is demoted to an unsigned integer with smaller size, the
result is the nonnegative remainder on division by the number one greater than the largest
unsigned number that can be represented in the type with smaller size. When a value with
integral type is demoted to a signed integer with smaller size. or an unsigned integer is converted
to its corresponding signed integer. if the value cannot be represented the result is
implementation-defined

27 The intearal nomotions are apnlied onlv ;1s DXI of the usual arithmelic conversions. IO cenain argument . .
express&s. 10 rhe operands of the II&IQ i. -. and - operator%. and 10 both operands of thh shift
operators. ah specified by rheir respective hubclause>

ZX In a rwo‘s-complement representation. there ih no actuill change in the bit pattern except tilling the
high-order bits with copies of the sign bit if the unblgned integer has greater size

34 Language

ISOAEC 9899 I YYO (E I

6.2.1.3 Floating and integral

When a value of floating type is convened 10 integral type. the fractional part is discarded It
the value of the integral pan cannot be represented by the integral type. the behavior iz
undetined.”

When a value of integral type is converted to Boating type. if the value being converted is in
the range of values that can be represented but cannot be represented exactI>. the result i\ either
the nearest hipher or nearest lower value. chosen in an implementation-defined manner

6.2.1.4 Floating types

When a float ih prbmoted to double or long double. or a double is promoted fo
long double. its value is unchanged.

When a double is demoted to float or a long double to double or float. if the
value being convened is outside the range of values that can be represented. the behavior is
undefined. If the value being converted is in the range of values that can be represented but
cannot be represented exactly. the result is either the nearest higher or nearest lower value.
chosen in an implementation-delined manner.

6.2.1.5 Usual arithmetic conversions

Many binary operators that expect operands of arithmetic type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of
the result. This pattern is called the rtsual arithmetic cm~ersions:

First. if either operand has type long double, the other operand is converted to long
double.

Otherwise, if either operand has type double, the other operand is converted to double.

Otherwise. if either operand has type float, the other operand is converted to float.

Otherwise. the integral promotions are performed on both operands. Then the following
rules are applied:

If either operand has type unsigned long int, the other operand is converted to
unsignedlongint.

Otherwise. if one operand has rype long int and the other has type unsigned
int. if a long int can represent all values of an unsigned int. the operand of
type unsigned int ih converted to long int; if a long int cannot represent
all the values of an unsigned int, both operands are converted to unsigned
long int

Othcrwtke. if either operand ha\ type long int, the other operand is converted to
long int

Otheruiw. if either operand has type unsigned int. the orher operand i\
converted 10 unsigned int

Othetwiw. horh opcrand~ have type int.

The value5 of Hoaring operands and of the results of floating expressions may be represented
in greater precikn and range than that required by the type; the types are not changed thereby I”

29 The remaindermg opcralmn pcrtormcd when a value of integral type is converted IO unsigned type need
nor he performed uhcn a value 01 tlnating type is converted to unsigned type Thus. the range 01
ponablc floatmg \aluc\ i\ (- 1 .Unpt,-MAX+1)

20 The calrt and a~~tpnrnenr operators still must perform their specified conversions. as described in 6 2 I 3 .
and 6 1 I -I

Language 35

ISO/IEC 9899: 1990 (E)

6.2.2 Other operands .
6.2.2.1 Lvalues and function designators

An Ivalue is an expression (with an object type or an incomplete type other than void) that
” designates an object: When an object is said to have a particular type. the type is specified by

the lvalue used to designate the object. A modijiahle hahe is an lvalue that does not have array
type, does not have an incomplete type, does not have a const-qualified type. and if it is a
structure or union. does not have any member (including. recursively, any member of all
contained structures or unions) with a const-qualified type.

Except when it is the operand of the sizeof .operator. the unary h operator. the ++ operator.
the -- operator. or the left operand of the . operator or an assignment -operator. an lvalue that
does not have array type is converted to the value stored in the designated object (and is no
longer an Ivalue). If the lvalue has qualified type. the value has the unqualified version of the
type of the Ivalue: otherwise. the value has the type of the Ivalue. If the lvalue has an incomplete
type and does not have array type. the behavior is undefined.

Except when it is the operand of the sizeof operator or the unary 6 operator, or is a
character string literal used to initialize an array of character type. or is a wide string literal used
to initialize an array with element type compatible with wchar-t, an lvalue that has type “array
of type” is converted to an expression that has type “pointer to rype” that points to the initial
element of the array object and is not an Ivalue.

Afuncrion desipzaror is an expression that has function type. Except when it is the operand
of the sizeof operato?’ or the unary 6 operator. a function designator with type “function
returning r?pe” is converted to an expression that has type “pointer to function returning type.”

Forward references: address and indirection operators (6.3.3.2). assignment operators (6.3.16).
common definitions <stddef . h> (7.1.6). initialization (6.5.7), postfix increment and decrement
operators (6.3.2.4). prefix increment and decrement operators (6.3.3.1). the sizeof operator
(6.3.3.4). structure and union members (6.3.2.3).

6.2.2.2 void

The (nonexistent) value of a void esprrssiorr (an expression that has type void) shall not be
used in an) way. and implicit or explicit conversions (except to void) shall not be applied to
such an expression. If an expression of any other type occurs in a context where a void
expression is required, its value or designator is discarded (A void expression is evaluated for
its side effects.)

6.2.2.3 Pointers

A pointer to void may be converted to or from a pointer to any incomplete or object type.
A pointer 10 any incomplete or object type may be converted 10 a pointer to void and back
again: the result shall compare equal 10 the original pointer

For any qualilier y. a pointer fo a non-cl-qualitied type may be converted to a pointer to the
y-qualified version of the type: the value\ stored in rhe original and converted pointers shall
compare equal.

31 The name “Ivalue” come5 originally from the a\Ggnment expression El = E2. in which the left
operand El musl be a (modifiable) lvalue Ir i\ perhaps better considered as representing an object
“locator value ” What ih sometime3 called “r\aluc” is in thih International Standard described as the
“value 01 an expression *’
An obvious example of an lvalue is an identitier I f an object As a further example, if E is a unary
expression that ih a poimer to an object. l E iz an Iv, ue that designates the object to which E points.

32 Because thih conversion does not occur. the operand of the sizeof operator remains a function
designator and violates the constrainr in 6 3 3 -l

36 Language

ISO/IEC 9899: 1990 (E)

An integral constant expression with the value 0, or such an expression cast to type void *.
is called a null poi~trer- consranr.33 If a null pointer constant is assigned to or compared for
equality to a pointer. the constant is converted to a pointer of that type. Such a pointer. called a
null poinrer-. is guaranteed to compare unequal to a pointer to any object or function.

Two null pointers. converted through possibly different sequences of casts to pointer types.
shall compare equal.

Forward references: cast operators (6.3.4). equality operators (6.3.9). simple assignment
(6.3.16.1).

33 The macro NULL ih defined in <stddef. h> as a null pointer constant: see 7.1.6

Language 37

ISO/IEC 9899: 1990 (E)

6.3 Expressions
An e.\-pressin~ is a sequence of operators and operands that specifies computation of a value.

or that designates an object or a function. or that generates side effects. or that performs a
combination thereof.

Between the previous and next sequence point an object shall have its stored value modified
at most once by the evaluation of an expression Furthermore. the prior value shall be accessed
only to determine the value to be stored.”

Except as indicated by the syntax” or otherwise specified later (for the function-call operator
0. 6h. 1 I. ?:. and comma operators). the order of evaluation of subexpressions and the order ’

in which side effects take place are both unspecitied

Some operators (the unary operator -. and the binary operators <<. >>. 6. A. and I.
collectively described as him*i~ ape,-uro/ T) shall have operands that have integral type. These
operators return values that depend on the internal representations of integers. and thus have
implementation-defined aspects for signed types

If an euepriott occurs during the evaluation of an expression (that is. if the result is flat
mathematically defined or not in the range of representable values for its type). the behavior is
undelined

An object shall have its stored value accessed only by an lvalue that has one of the following
types?”

- the declared type of the object,

- a qualified version of the declared type of the object.

- a type that is the signed or unsigned type corresponding to the declared type of the object,

- a type that is the signed or unsigned type corresponding to a qualified version of the declared
type of the object.

- an aggregate or union type that includes one of the aforementioned types among its members
(including. recursively. a member of a hubaggregate or contained union). or

- a character type

i = i + 1;

7q The \\ntax \pecitir the precedence 01 opcralcjr\ 111 Ihc c\ ;I~U;IIIW (11 an expression which is the same ah
the o;drr of the major subclauses ot thl\ ~~hcltiu\c hlfhc\t prcccdence first Thus for example. the
expreh\ions allowed ah the operands of the blnar! + opcrJ[or 16 J hr shall he those expressions defined in
h 3 I through 6 3 6 The excepuons are L~\I cpre\\lon\ 16 3 41 a\ operands ot unary operators (6.3 3).
and an operand contained between an> of Ihc‘ lollou ,112 pair\ 01 operators: groupmg parentheses ()
th 3 I). subscrlpimg brackets [I (6 3 2 I) luncheon-cull parenthew\ () (6 3 2.2). and the conditional
operator ? : th .; 151

Within each major whclause the operator\ hake the \amc precedence Left- or right-associativity is
mdlcated m each whclawe by the synta\ tar the exprcwon\ dIscussed therein

76 The Intent of tht\ list is to specify those circumstance\ in which an object may or may not be aliased

38 Language

ISO/lEC 9899 1990 (E)

6.3.1 Primary expressions
Syntax

pr-inzat-~-e.\pressiorl
identifiet
constant
string-liter-al
(e yessiotl)

Semantics

An identifier is a primary expression. provided it has been declared as designating an object
(in which case it is an Ivalue) or a function (in which case it is a function designator)

A constant is a primary expression. Its type depends on its form and value. as detailed in
6.1.3

A string literal is a primary expression. It is an lvalue with type as detailed in 6 1 3

A parenthesized expression is a primary expression Its type and value are identical to those
of the unparenthesized expression. it is an Ivalue. a function designator, or a void expression if
the unparenthesized expression is, respectively, an Ivalue. a function designator. or a void
expression

Forward references: declarations (6.5).

6.3.2 Postfix operators
Syntax

post@-expression:
pr-imary-expression
postfrs-expression [expression]
post@\-expression (al;prmtent-espr’ession-Iist
pottfr\-e.~p”e.~siort . idenri’er OP’

)

postfi \-cvpr-ession -> identifier
p0.itfr.f -e.~pression ++
postfix-eqwession - -

ar-~tmtetit-e.~p~e.~sinrl-list
arsiSnnient-esp,vssiorl
u~,~ltnierlt-e.\p~cssiorl-lirt , assiRtlme,lt-espressio,l

6.3.2.1 Array subscripting

Constraints

One of the expressions shall have type “pointer to object r~pc,” the other expression shall
have integral type. and the result has type “r\pe ‘*

Semantics

A posttix expression followed by an expression in square brackets [] is a subscripted
designation of an element ot an array object The definition of the subscript operator [] is that
El [E2] is identical 10 (* (El+(E2))) Because of the conversion rules that apply to the
binary + operator. it El ih an array object (equivalently. a pointer to the initial element of an
array object) and E2 is an integer. El [E2] designates the E2-th element of El (counting from
zero).

Successive subscript operaIors designate an element of a multidimensional array object. If E
is an n-dimensional array (r1>3_) with dimensions ixjx . xh. then E (used as other than an
Ivalue) is converted lo a pointer to an (n- I)-dimensional array with dimensions ix . . xX If the
unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting. the

.

Language 39

ISO/IEC 9899: 1990 (E)

result is the pointed-to (n- I)-dimensional array. which itself is converted into a pointer if used as
other than an lvalue. It follows from this that arrays are stored in row-major order (last subscript
varies fastest).

Example

Consider the array object defined by the declaration

int x[3] (51;

Here x is a 3x5 array of ints; more precisely, x is an array of three element objects. each of
which is an array of five ints. In the expression x[i], which is equivalent to (* (x+(i))) .
x is first converted to a pointer to the initial array of five ints. Then i is adjusted according to _
the type of x, which conceptually entails multiplying i by the size of the object to which the
pointer points, namely an array of five int objects. The results are added and indirection is
applied to yield an array of five ints. When used in the expression x [i] [j] . that in turn is
converted to a pointer to the first of the ints. so x [i] [j] yields an int.

Forward references: additive operators (63.6). address and indirection operators (6.3.3.2), array
declarators (6.5.4.2).

6.3.2.2 Function calls

Constraints

The expression that denotes the called functior?’ shall have type pointer to function returning
void or returning an object type other than an array type.

if the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall have a
type such that its value may be assigned to an object with the unqualified version of the type of
its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

If the expression that precedes the parenthesized argument list in a function call consists
solely of an identifier. and if no declaration is visible for this identifier, the identifier is implicitly
declared exactly as if. in the innermost block containing the function call. the declaration

extern int idenfifrer () ;

appeared.‘x

An argument may be an expression of any object type. In preparing for the call to a function.
the arguments are evaluated. and each parameter is assigned the value of the corresponding
argument.” The value of the function call expression is specified in 6.6 6.4.

37 MOSI often. this is the result of converting an identifier that is a function designator
38 That is. an identifier with block scope declared to have external linkage with type function without

parameter information and returning an int If in tact it is not detined as having type “function
returning int,” the behavior is undefined

39 A function may change the values of its parameters. but these changes cannot affect the values of the
arguments On the other hand. 1 is possible to pax\ a pointer to an object. and the function may change
the value of the object pointed to A parameter declared to have array or function type is converted to a
parameter with a pointer type as described in 6 7 I

40 Language

ISO/IEC 9899 1990 (E)

If the expression that denotes the called function has a type that does not include a prototype.
the integral promotions are performed on each argument and arguments that have type float are
promoted to double. These are called the defuulr ar;~lrnle~lt p~~~n~rinr?s If the number of
arguments does not agree with the number of parameters. the behavior is undefined. If the
function is defined with a type that does not include a prototype. and the types of the arguments
after promotion are not compatible with those of the parameters after promotion. the behavior is
undefined. If the function is defined with a type that includes a prototype. and the types of the
arguments after promotion are not compatible with the types of the parameters. or if the prototype
ends with an ellipsis (, . . .). the behavior is undefined.

If the expression that denotes the called function has a type that incjudes a prototype. the
arguments are implicitly converted. as if by assignment. to the types of the corresponding
parameters. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter The default argument promotions are
performed on trailing arguments. If the function is defined with a type that is not compatible
with the type (of the expression) pointed to by the expression that denotes the called function. the
behavior is undefined

No other corkersions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that does not
include a function prototype declarator.

The order of evaluation of the function designator, the arguments. and subexpressions within
the arguments is unspecified, but there is a sequence point before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any chain of
other functions.

Example

In the function call

(*pf[fl()l) (f20, f30 + f4())

the functions f 1. f2. f3. and f4 may be called in any order. All side effects shall be
completed before the function pointed to by pf [f 1 ()] is entered.

Forward references: function declarators (including prototypes) (6.5.4.3). function definitions
(6.7.1). the return statement (6.6.6.4). simple assignment (6.3.16.1).

6.3.2.3 Structure and union members

Constraints

The first operand of the . operator shall have a qualified or unqualified structure or union
type. and the second operand shall name a member of that type.

The tirht operand ot the -> operator shall have type “pointer to qualified or unqualified
structure” or “pointer to qualified or unqualified union.” and the second operand shall name a
member of the type pointed IO

Semantics

A postfix exprc>sion lolioued b> a dot . and an identifier designates a member of a structure
or union object The value i\ that ot the named member. and is an lvalue if the first expression
i\ an lvalue It the tint expression has qualifed type. the result has the so-qualified version of
the type of the designated member

Language ' 41

ISO/IEC 9899: 1990 (E)

A postfix expression followed by an arrow -> and an identifier designates a member of a
structure or union object. The value is that of the named member of the object to which the lirst
expression points. and is an Ivalue. u, If the first expression is a pointer to a qualitied type, the
result has the so-qualified version of the type of the designated member.

With one exception, if a member of a union object is accessed after a value has been stored in
a different member of the object. the behavior is implementation-defined.” One special
guarantee is made in order to simplify the use of unions: If a union contains several structures
that share a common initial sequence (see below). and if the union object currently contains one
of these structures. it is permitted to inspect the common initial part of any of them. Two
structures share a wmnzorl birid sey~~r~e if corresponding members have compatible types (and.
for bit-fields. the same widths) for a sequence of one or more itiitial members.

Examples

I. If f is a function returning a structure or union, and x is a member of that structure or
union, f () . x is a valid postfix expression but is not an Ivalue.

2. The following is a valid fragment:

union {
struct (

int alltypes;
1 n;
struct {

int type:
int intnode;

f ni;
struct (

int type;
double doublenode;

1 nf;
I u;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/*...*/
if (u.n.alltypes == 1)

/*. . . */ sin(u.nf.doublenode) /*...*/

Forward references: address and indirection operators (6.3.3.2). structure and union specifiers
(6.52. I).

6.3.2.4 Postfix increment and decrement operators

Constraints

The operand of the postfix increment or decrement operator shall have qualified or unqualified
scalar type and shall be a modifiable Ivalue

40 If CE is a valid pointer expression (where 6 i\ the “address-of” operator. which generates a pointer IO
its operand). the expression (GE) -X4OS ih the harnc as E .MOS

-%I The “byte order%” for scalar types are invi\G-Ac IO isolated programs that do not indulge in type punning
tfor example. py assigning IO one member 01 a union and inspecting the storage by accessing anotl =r
mcmbcr that IS an appropriately sized arra? 01 charackr type). but must be accounted for wh,n
conformmg IO exremally imposed storage layouts

42 Language

ISO/IEC 9899: 1990 (E)

Semantics

The result of the posttix ++ operator is the value of the operand After the result is obtained.
the value of the operand is incremented. (That is. the value 1 of the appropriate type is added to
it.) See the discussions of additive operators and compound assignment for information on
constraints, types. and conversions and the effects of operations on pointers The side eftect of
updating the stored value of the operand shall occur between the previous and the next sequence
point.

The postfix -- operator is analopous to the postfix ++ operator. except that the value of the
operand is decremented (that is. the value I of the appropriate type is subtracted from it)

Forward references: additive operators (6.3 6). compound assignment (6 3.16 2).

6.3.3 Unary operators
Syntax

iolar~-e.\prestirtrt
posrfi.\-espressiotl
++ lotar~-espressiofl
-- rctiat:~-e.~pressi~ttl
utlar~qerarol (usr-e.vpression
sizeof uttarjv.\pressiotl
sizeof (fype-uanle)

unaryoperator one of
li*+--!

6.3.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have qualified or unqualified
scalar type and shall be a modifiable lvalue

Semantics

The value of the operand of the pretix ++ operator is incremented The result is the new
value of the operand atter incrementation. The expression ++E is equivalent to (E+=l) . See
the discussions of additive operators and compound assignment for information on constraints.
types. side effects. and conversions and the effects of operations on pointers

The pretix -- operator is analogous to the prefix ++ operator, except that the value of the
operand is decremented

Forward references: additive operator\ (63.6). compound assignment (6.3.16 3).

6.3.3.2 Address and indirection operators
Constraints

The operand ot the unar) & operator .shall he either a function designator or an lvalue that
designates an object that k not a hit-tick1 and I\ not declared with the register storage-class
specitier

The operand of the unar) * operator IrhaII have pointer type,

Semantics

The result ot the unarq b (addre\~-of) operator is a pointer to the object or function
designated by its operand If the operand has type “r~pc,” the result has type “pointer to rype.”

.
The unary * operator denotca indirection If the operand points to a function. the result is a

function designator. if it points to an object. the result is an lvalue designating the object If the

Language 43

ISO/rEC 9899: 1990 (E)

operand has type “pointer to type.” the result has type “f?‘pe.” If an invalid value has been
assigned to the pointer, the behavior of the unary * operator is undefined.”

Forward references: storage-class specifiers (6.5.1). structure and union specifiers (6.52. I).

6.3.3.3 Unary arithmetic operators
Constraints

The operand of the unary + or - operator shall have arithmetic type: of the - operator.
integral type: of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its operand. The integral promotion is
performed on the operand. and the result has the promoted type.

The result of the unary - operator is the negative of its operand. The integral promotion is
performed on the operand. and the result has the promoted type.

The result of the -, operator is the bitwise complement of its operand (that is. each bit in the
result is set if and only if the corresponding bit in the converted operand is not set). The integral
promotion is performed on the operand. and the result has the promoted type. The expression -E
is equivalent to (ULONG-MAX-E) if E is promoted to type unsigned long. to
(UINT-M-E) if E is promoted to type unsigned int. (The constants ULONG-MAX and

UINT-M&X are defined in the header <limits. h>.)

The result of the logical negation operator ! is 0 if the value of its operand compares unequal
to 0. I if the value of its operand compares equal to 0. The result has type int. The expression
!E is equivalent to (O==E) .

Forward references: limits <float. h> and <limits. h> (7.1.6).

6.3.3.4 The sizeof operator
Constraints

The sizeof operator shall not be applied to an expression that has function type or an
incomplete type. to the parenthesized name of such a type, or to an lvalue that designates a bit-
field object.

Semantics

The sizeof operator yields the size (in bytes) of its operand. which may be an expression
or the parenthesized name of a type. The size is determined from the type of the operand. which
is not itself evaluated. The result is an integer constant

When applied to an operand that has type char. unsigned char. or signed char. (or a
qualilied version thereof) the result is I When applied to an operand that has array type, the
result is the total number of bytes in the array ” When applied to an operand that has structure
or union type. the result is the total number 01 bytes in such an object. including intemal and
trailing padding.

12 II is always true that if E is a function designator or an lvaluc that is a valid operand of the unary 6
operator. *SE is a function designator or an Ivuh~e equal to E It *P is an lvalue and T is the name of
an object pomter type. l (T)P is an lvalue that has a r>pe compatible with that to which T points

Among the invalid values for dereferencq a pointer hy the unary l operator are a null pointer, an
address it-tar >ropriately aligned for the type of ohjcct pointed IO. and the address of an automatic storage
duration obj’ :t when executton of the block utth which the object is associated has terminated

41 When applted to a parameter declared IO have array or function type, the sizeof operator yields the
size of the pointer obtained by converting as in h 2.1 I: see 6.7 I

4-4 Language

ISO/IEC 9899: 1990 (E)

The value of the result is implementation-defined. and its type (an unsigned integral type) is
size-t defined in the <stddef . h> header.

Examples

1. A principal use of the sizeof operator is in communication with routines such as storage
allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of
an object to allocate and return a pointer to void. For example:

extern void *alloc(size-t);
double *dp = alloc(sizeof *dp);

The implementation of the allot function should ensure that its return value is aligned
suitably for conversion to a pointer to double.

2. Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[O]

Forward references: common definitions <stddef . h> (7. I .6), declarations (6.5). structure and
union specifiers (6.521). type names (6.5.5).

6.3.4 Cast operators
Syntax

cast-cvpression .
unury-espression
(type-name) cast-expression

Constraints

Unless the type name specifies void type, the type name shall specify qualified or unqualified
scalar type and the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to
the named rype. This construction is called a c(~sr.~ A cast that specifies no conversion has no
effect on the type or value of an expression.

Conversions that involve pointers (other than as permitted by the constraints of 6.3.16.1) shall
be specitied by means of an explicit cast, they have implementation-defined and undefined
aspects:

A pointer may be convened to an integral type. The size of integer required and the result
are implementation-defined If the space provided is not long enough. the behavior is
undetined

An arbiter! integer ma> he converted to a pointer. The result is implementation-
detined”

A pointer IO an object or incomplete type may be converted to a pointer to a different
object type or a dillercnt incomplete type. The resulting pointer might not be valid if it is
improperI> aligned for the ~ypc pointed to. It is guaranteed. however. that a pointer to an
object of a given alignment ma! bc converted to a pointer to an object of the same

4-1 .4 M\I does nor yield an I\;tIuc’ Thus. 3 CM IO a qualilied rype has the same eftect as B casl to the
unquuhtied VL’~WI~ of the I> pc

1 The mapping function\ lor convening a pointer IO an integer or an integer to a pointer are intended to be
consistem with rhe addrt!Gng structure of [he execution environment.

Language 45

ISO/IEC 9899: 1990 (E)

alignment or a less strict alignment and back again: the result shall compare equal to the
original pointer (An object that has character type has the least strict alignment.)

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function that has a type that is not compatible with the type of the
called function. the behavior is undefined.

Forward references: equality operators (6.3.9). function declarators (including prototypes)
(6.5.4.3). simple assignment (6.3.16.1). type names (6.5.5).

6.3.5 Multiplicative operators
Syntax

multiplicative-esp-pr-ession .
cast-espressioti

Constraints

ntultipli~~ati~~e-e~pres.~i~tl * cast-e.\prersiori
mdtiplicative-expression / cast-expression
multiplicative-eSl-pressh % cast-expsession

Each of the operands shall have arithmetic type. The operands of the % operator shall have
integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations. if the value of the
second operand is zero. the behavior is undefined.

When integers are divided and the division is inexact. if both operands are positive the result
of the / operator is the largest integer less than the algebraic quotient and the result of the %
operator is positive. If either operand is negative. whether the result of the / operator is the
largest integer less than or equal to the algebraic quotient or the smallest integer greater than or
equal to the algebraic quotient is implementation-detined. as is the sign of the result of the %
operator If the quotient a/b is representable. the expression (a/b) *b + a%b shall equal a.

6.3.6 Additive operators
Syntax

Constraints

For addition. either both operands shall have arithmetic type. or one operand shall be a
pointer to an object type and the other shall have integral type. (Incrementing is equivalent to
adding I .)

For subtraction. one of the following shall hold:

- both operands have arithmetic type;

- both operands are pointers to qualified or unqualitied versions of compatible object types; or

Language

ISO/lEC 9899 1990 tE,

- the left operand is a pointer to an object type and the right operand has integral type
(Decrementing is equivalent to subtracting 1.1

Semantics

If both operands have arithmetic type. the usual arithmetic conversions are performed on
them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of the
second operand from the first

For the purposes of these operators. a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its element

type.

When an expression that has integral type is added to or subtracted from a pointer. the result
has the type of the pointer operand. If the pointer operand points to an element of an array
object. and the array is large enough. the result points to an element offset from the original
element such that the difference of the subscripts of the resulting and original array elements
equals the integral expression. In other words. if the expression P points to the i-th element of
an array object. the expressions (P) +N (equivalently. N+(P)) and (P) -N (where N has the
value 11) point to, respectively, the ;+)I-th and i-jr-th elements of the array object, provided they
exist. Moreover. if the expression P points to the last element of an array object, the expression
(P) +l points one past the last elemen! of the array object. and if the expression Q points one

past the last element of an array object, the expression (Q) -1 points to the last element of the
array object. If both the pointer operand and the result point to elements of the same array
object. or one past the last element of the array object, the evaluation shall not produce an
overflow; otherwise, the behavior is undefined. Unless both the pointer operand and the result
point to elements of the same array object, or the pointer operand points one past the last element
of an array object and the result points to an element of the same array object, the behavior is
undelined if the result is used as an operand of the unary * operator.

When two pointers to elements of the same array object are subtracted, the result is the
difterence of the subscripts of the two array elements. The size of the result is implementation-
defined. and its type (a signed integral type) is ptrdiff-t defined in the <stddef. h> header
As with any other arithmetic overflow, if the result does not fit in the space provided. the
behavior is undetined In other words. if the expressions P and Q point to, respectively. the i-th
and j-th elements of an array object. the expression (P)-(Q) has the value i-j provided the
value tits in an object of type ptrdiff-t. Moreover. if the expression P points either to an
element of an array object or one past the Ias1 element of an atiay object. and the expression Q
points IO the last element of the same array object. the expression ((Q) +l) - (P) has the same
value a’r ((Q) - (P)) +1 and a5 - ((P) - ((Q) +l)) . and has the value zero if the,expression P
points one past the last element ol the array object. even though the expression (Q) +l does not
point to an element of the arra! ob.ject Unless both pointers point to elements of the same array
object. or one past the IN element ol the array object, the behavior is undefined.lh

46 Another way IO approach pointer clrlthmc~ic 15 lirst 10 convert the pointer(s) to character pointer(h): In
this scheme the inkzgral expression added to or subtracted from the converted pointer is tirsr multiplied
by the size of rhc oh~ccr origInall> po~ntcd lo. und the resulting pointer is converted back to the original
type For pointer subtraction rhc re\uII 01 the difference between the character pointers is similarI!
divided h) the SIK 01 the ohjecl orlpmally pomled to

When viewed in lh14 ua!. 311 mlplcmenkuion need only provide one extra byte (which may overl:Jp
another object in the programs JU\I after the end of the object in order IO satisfy the “one past the Iti i
element” requirement3

Language 47

ISO/IEC 9899: I990 (E)

Forward references: common definitions cstddef . h> (7.1.6).

6.3.7 Bitwise shift operators
Syntax

shtftxrpression
additive-expression
shift-expression << additive-espression
shift-expression >> additive-e.\prvssion

Constraints

Each of the operands shall have integral type.

Semantics

The integral promotions are performed on each of the operands. The type of the result is that
of the promoted left operand. If the value of the right operand is negative or is greater than or
equal to the width in bits of the promoted left operand. the behavior is undefined.

The result of El << E2 is El left-shifted E2 bit positions; vacated bits are filled with zeros.
If El has an unsigned type. the value of the result is El multiplied by the quantity, 2 raised to
the power E2, reduced module ULONG_MAx+l if El has type unsigned long, UINT-MAX+1
otherwise. (The constants ULONG-MAX and UINT-MAX are defined in the header
<limits. h>.)

The result of El >> E2 is El right-shifted E2 bit positions. If El has an unsigned type or if
El has a signed type and a nonnegative value, the value of the result is the integral part of the
quotient of El divided by the quantity, 2 raised to the power E2. If El has a signed type and a
negative value, the resulting value is implementation-defined.

6.3.8 Relational operators
Syntax

relational-expression
shaft-e..\pression

Constraints

relational-espression < sh~~t-c\lli.cssiorl
r-elational-expression > rhift-eqwession
relational-e.~pressioli <= shift-r\pl cssim
relational-expression >= shift-c~pres~ion

One of the following shall hold:

- both operands have arithmetic type.

- both operands are pointers to qualified or unqualified versions of compatible object types: or

- both operands are pointers to qualified or unqualified versions of compatible incomplete types.

Semantics

If both of the operands have arithmetic type. the usual arithmetic conversions are performed.

For the purposes of these operaton. a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its element
1YP.

When two pointers are compared. the result depends on the relative locations in the address
space of the objects pointed to. If the objects pointed to are members of the same aggregate
object. pointers to structure members declared later compare higher than pointers to members
declared earlier in the structure. and pointers to array elements with larger subscript values

48 Language

ISO/IEC 9899.1990 (E)

compare higher than pointers’ to elements of the same array with lower subscript values. All
pointers to members of the same union object compare equal. If the objects pointed to are not
members of the same aggregate or union object. the result is undefined. with the following
exception. If the expression P points to an element of an array object and the expression Q
points to the last element of the same array object, the pointer expression Q+l compares higher
than P, even though Q+l does not point to an element of the array object.

If two pointers to object or incomplete types both point to the same object. or both point one
past the last element of the same array object. they compare equal. If two pointers to object or
incomplete types compare equal. both point to the same object. or both point one past the last
element of the same array object..”

Each of the operators < (less than). > (greater than), <= (less than or equal to). and >=
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.4x The
result has type int.

6.3.9 Equality operators
Syntax

Constraints

eqNalit~-e.~pressiorl == relational-espression
equality-e.vpression ! = relational-expression

One of the following shall hold:

- both operands have arithmetic type;

- both operands are pointers to qualified or unqualified versions of compatible types;
- one operand is a pointer to an object or incomplete type and the other is a pointer to a

qualified or unqualified version of void: or

- one operand is a pointer and the other is a null pointer constant.

Semantics

The == (equal to) and the != (not equal to) operators are analogous to the relational
operators except for their lower precedence.‘” Where the operands have types and values suitable
for the relational operators. the semantics detailed in 6.3.8 apply.

If two pointers to object or incomplete types are both null pointers. they compare equal. If
two pointers to object or incomplete types compare equal. they both are null pointers. or both
point to the same object. or both point one past the last element of the same array object. If two
pointers IO function type5 are both null pointers or both point to the same function. they compare
equal It two pointer3 to function types compare equal. either both are null pointers. or both
point to the same function If one of the operands is a pointer to an object or incomplete type
and the other has type pointer IO a qualified or unqualified version of void. the pointer to an
object or incomplete type is converted to the type of the other operand.

17 II invalid prior poinlrr operalion\. such ;I> accexseh outside array bounds. produced undetined behavior.
the etlecl of subsequent comparisons I\ undetined

-1X The expre.rsion a<b<c i> not interpreted as in ordinary mathematics As the syntax indicates. iI means
(acb) <c: in other word>. “it a ih le\\ than b compare I 10 c; otherwise. compare 0 to c ”

49 Because of the precedences. a<b == c<d ih I whenever a& and c<d have the same muh-value .

Language 49

ISO/IEC 9899: 1990 (E)

6.3.10 Bitwise AND operator
Syntax

AND-expression
equaliryespression

Constraints

AND-expression h equalit?-e.\pression

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary 6 operator is the bitwise AND of the operands (that is. each bit in the
result is set if and only if each of the correspondin, 0 bits in the converted operands is set)

6.3.11 Bitwise exclusive OR operator
Syntax

e.dttsive-OR-expression.
AND-e.\pression

Constraints

exchsise-OR-expressiott A AND-e.\pressiott

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the A operator is the bitwise exclusive OR of the operands (that is. each bit in
the result is set if and only if exactly one of the corresponding bits in the converted operands is
set).

6.3.12 Bitwise inclusive OR operator
Syntax

ittc Iuti\,e-OR-espressiott
e \l,lusi~.e-OR-e.\pressiott

Constraitits

inclusive-OR-espressiott I CM Irtsi\ cl-OR-e\presriott

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are pertormed on the operands.

The result of the l operator is the birwihe inclusive OR of the operands (that is, each bit in
the result is set if and only if at least one ot the corresponding bits in the converted operands is
set I

50 Language

ISO/IEC 9899.1990 (E)

6.3.13 Logical AND operator
Syntax

lo,~ical-AND-e.~pressiorl
incltrsi~,e-OR-espressian

Constraints

lo,qical-AND-espr-ession h&i inclusive-OR-eqwessinn

Each of the operands shall have scalar type.

Semantics

The 66 operator shall yield 1 if both of its operands compare unequal rb 0: otherwise. it
yields 0 The result has type int.

Unlike the bitwise binary 6 operator, the &h operator guarantees left-to-right evaluation: there
is a sequence point after the evaluation of the first operand. If the first operand compares equal
to 0. the second operand is not evaluated.

6.3.14 Logical OR operator
Syntax

logical-OR-expression.
IaRical-AND-espressiort

Constraints

logical-OR-expression] 1 logical-AND-expression

Each of the operands shall have scalar type.

Semantics

The 1 1 operator shall yield I if either of its operands compare unequal to 0; otherwise, it
yields 0. The result has type int.

Unlike the bitwise 1 operator. the 1 1 operator guarantees left-to-tight evaluation: there is a
sequence point after the evaluation of the first operand. If the first operand compares unequal to
0. the second operand is not evaluated.

6.3.15 Conditional operator
Syntax

c~otitlitiotrol-e.\pt.~,.~.~ilttt
loyit ol-OR-c.\pressirtrr

Constraints

logic ol-OR-c \pt ewiotr ? e.\pt cssion : c,otiditiorlal-espt ession

The first operand shall have scalar type.

One of the following hhall hold for the second and third operands:

- both operands have arithmetic type.

- both operands have compatible structure or union types,

- both operands have void type,

- b,th operands are pointers to qualified or uoqualified versions of compatible types:

- one operand is a pointer and the other is a null pointer constant: or

- one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of void.

.

Language 51

ISO/IEC 9899: 1990 (E)

Semantics

The first operand is evaluated: there is a sequence point after its evaluation. The second
operand is evaiuated only if the first compares unequal to 0: the third operand is evaluated only if
the first compares equal to 0: the value of the second or third operand (whichever is evaluated) is
the result.50

If both the second and third operands have arithmetic type. the usual arithmetic conversions
are performed to bring them to a common type and the result has that type. If both the operands
have structure or union type. the result has that type. If both operands have void type. the result
has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the
types pointed-to by both operands. Furthermore. if both operands are pointers to compatible

. types or differently qualified versions of a compatible type, the result has the composite type: if
one operand is a null pointer constant, the result has the type of the other operand; otherwise. one
operand is a pointer to void or a qualified version of void. in which case the other operand is
converted to type pointer to void. and the result has that type.

Example

The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the
two pointers have compatible types.

Given the declarations

const void *c-vp;
void *vp;
const int *c_ip;
volatile int *v-ip;
int *ip;
const char *c cp;

the third column in the following table is the common type that is the result of a conditional
expression in which the first two columns are the second and third operands (in either order):

=-VP c_iP const void *
v,ip 0 volatile int *
c_iP v,iP const volatile int *
VP =-cp const void *
ip c_iP const int *
vp ip void l

SO A conditional expression does not yield an Ivalue.

52 Language

ISO/IEC 9899: 1990 (E)

6.3.16 Assignment operators
Syntax

assi~~nment-espirssion
conditional-expression
lmat:\l-esprussion assi,gnment-operator assignment-expression

assigmnent-operator-. one of
= *= /= %= += -= <<= >>= &C A= I=

Constraints

An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

An assignment operator stores a value in the object designated by the left operand An
assignment expression has the value of the left operand after the assignment. but is not an Ivalue.
The type of an assignment expression is the type of the left operand unless the left operand has
qualified type, in which case it is the unqualified version of the type of the left operand. The
side effect of updating the stored value of the left operand shall occur between the previous and
the next sequence point.

The order of evaluation of the operands is unspecified.

6.3.16.1 Simple assignment

Constraints

One of the following shall hold:”

- the left operand has qualified or unqualified arithmetic type and the right has arithmetic type;

- the left operand has a qualified or unqualified version of a structure or union type compatible
with the type of the right;

- both operands are pointers to qualified or unqualified versions of compatible types. and the
type pointed to by the left has all the qualifiers of the type pointed to by the tight;

- one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualitied or unqualified version of void. and the type pointed to by the left has all the
qualifiers of the type pointed to by the right: or

- the left operand is a pointer and the right is a null pointer constant.

Semantics

In rhrpk usti,~mcwt (=). the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left operand.

It the value being stored in an object is accessed from another object that overlaps in any way
the storage of the first object. then the overlap shall be exact and the two objects shall have
qualitied or unqualified versions of a compatible type: otherwise, the behavior is undefined.

51 The a\)mmctric appcarancc of the : constrainrs with respect to type qualifiers is due to the conversion
(spccihed in 6 _ _ ” I) that changes lvalues to “the value of the expression” which removes any type
quclliherh tram the type category of the expression.

Language 53

ISO/IEC 9899:1990 (E)

Example

In the program fragment

int f (void) ;
char c;
/*...*/
/*... */ ((c = f()) == -1) /*...*/

the int value returned by the function may be truncated when stored in the char. and then
converted back to int width prior to the comparison. In an implementation in which “plain”
char has the same range of values as unsigned char (and char is narrower than int). the
result of the conversion cannot be negative. so the operands of the comparison can never compare
equal. Therefore, for full portability. the variable c should be declared as int.

6.3.16.2 Compound assignment

Constraints

For the operators += and -= only. either the left operand shall be a pointer to an object type
and the right shall have integra1 type, or the left operand shall have qualified or unqualified
arithmetic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those allowed
by the corresponding binary operator.

Semantics

A compowtd assignment of the form El op= E2 differs from the simple assignment
expression El = El op (E2) only in that the lvalue El is evaluated only once.

63.17 Comma operator
Syntax

espression.
assi,qnment-e.\pression
expression , assi~~timent-e\pr~~~.~iOtl

Semantics

The left operand of a comma operator is evaluated as a void expression: there is a sequence
point after its evaluation. Then the right operand is evaluated. the result has its type and value.“’

Example

As indicated by the syntax. in contexts where a comma is a punctuator (in lists of arguments
to functions and lists of initializers) the comma operator as described in this subclause cannot
appear. On the other hand. it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts In the tunction call

f (a, (t=3, t+2), c)

the function has three arguments. the second ot which has the value 5.

Forward references: initialization (6.5 7)

S1 A comma operator does not yield an lvalue

54 Language

ISO/lEC 9899.1990 (E)

6.4 Constant expressions
Syntax

c.nnstant-e.~p~ession:
c orlditiotlal-e.~pressio,l

Description

A cottstat~t e.~prrr.sion can be evaluated during translation rather than runtime. and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment. increment. decrement. function-call. or
coinma operators. except when they are contained within the operand of a sizeof operator”

Each constant expression shall evaluate to a constant that is in the range of representable
values for its type

Semantics

An expression that evaluates lo a constant is required in several contexts.” If a floating
expression is evaluated in the translation environment, the arithmetic precision and range shall be
at least as great as if the expression were being evaluated in the execution environment

An integrul constant evpressim shall have integral type and shall only have operands that are
integer constants. enumeration constants, character constants, sizeof expressions, and floating
constants that are the immediate operands of casts. Cast operators in an integral constant
expression shall only convert arithmetic types to integral types, except as part of an operand to
the sizeof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression
shall evaluate to one of the following:

- an arithmetic constant expression.

- a null pointer constant.

- an address constant. or

- an address constant for an object type plus or minus an integral constant expression.

An urithnwtit (onstunt P\/U c.srh shall have arithmetic type and shall only have operands
that are integer constants. floating constants. enumeration constants, character constants. and
sizeof expression5 Cast operator\ in an arithmetic constant expression shall only convert
arithmetic types to arirhmelic type\. except as part of an operand to the sizeof operator.

An c~c/t/rc~\ (onstun/ i\ a pointer to an Ivulue designating an object of static storage duration.
or to a function dehignaror. it shall hc created explicitly. using the unary & operator. or implicitly.
by the use ot an expre\Gon ot arm! or function type. The array-subscript [] and member-access
. and -> operator\. the address 6 and Indirection * unary operators, and pointer casts may be
used in the creation of an addre\\ conhtanl. but the value of an object shall not be accessed by
use of these operator\

51 The operand 01 a sizeof opcralor I\ not c\aluated (6.3 3.4). and thus any operator in 6.3 may be used
% An imeeral constant csprc\Gon muhI hc urcd IO specify the size of a bit-field member of a structure. the

value ol 3n enumcr311on con\lam. lhc \I,c’ ol an arm). or the alue of a case constant Funher
con.wnnt~ Iha1 appi! to Ihc integral conam expressions used in conditional-inclusion preprocessing
direcli\e\ are discussed in 6 X 1

Language 55

ISOflEC 9899: 1990 (E)

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.55

Forward references: initialization (6.5.7).

55 Thus. in the following initialization.

static int i = 2 I I 1 / C
the expression is a valid integral constant expremion with value one

.

56 Language

ISO/IEC 9899.1990 (E)

6.5 Declarations
Syntax

declaration
declar-ation-specifiers init-declarator-list ’ opr ’

dec,lar-ation-spec,i~e~s
storage-class-specifrcr declaration-specifiers
tye-spec ifrer declaration-specijers

0pr

ype-qualifier declaration-spec ijer-s
V’
Opt

init-dec lar-am--list
init-declarator
init-declar-ator--list , init-declar-ator

init-declarator
dec lar-ator
declarator = initializer

Constraints

A declaration shall declare at least a declarator, a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in
a declarator or type specifier) with the same scope and in the same name space, except for tags as
specified in 6.5.2.3.

All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A declaration
that also causes storage to be reserved for an object or function named by an identifier is a
definition.sh

The declaration specifiers consist of a sequence of specifiers that indicate the linkage. storage
duration. and part ot the type ot the entities that the declarators denote. The init-declarator-list is
a comma-separated sequence of declarators. each of which may have additional type information,
or an initializer. or both. The declarators contain the identifiers (if any) being declared

If an identifier for an object is declared with no linkage. the type for the object shall be
complete by the end of its declarator. or by the end of its init-declarator if it has an initializer.

Forward references: declaratorh (6.5 4). enumeration specifiers (6.5.2.2). initialization (6.5 7).
taps (6 5.2 3,

% Function detinlrion\ have a ditterent syntax. described in 6 7 I

Language 57

ISO/IEC 9899: 1990 (E)

6.51 Storage-class specifiers
Syntax

storage-class-specifiel
typedef
extern
static
auto
register

Constraints

At most, one storage-class specifier may be given in the ‘declaration specifiers i’n a
declaration.“’

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it
is discussed in 6.5.6 The meanings of the various linkages and storage durations were discussed
in 6.1.2.2 and 6 1.2.4.

A declaration of an identifier for an object with storage-class specifier register suggests
that access to the object be as fast as possible. The extent to which such suggestions are
effective is implementation-defined.58

The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other than extern.

Forward references: type definitions (65.6).

6.52 Type specifiers
Syntax

lye-specijier.
void
char
short
int
long
float
double
signed
unsigned
stl u(t-or-ro~ior~spc~ ifret
etutm-spec ijei
t!pedef-tlame

57 See “future language directions” (6 9 3)

.5X The implementation may treat any register declaratron stmply ;1s an auto declaration. However.
whether or not addressable storage is actually u\ed the address of any part of an object declared with
storage-class specitier register may not be computed. either explicitly (by use of the unary 6
operaror as discussed in 6 3.3 2) or implicitly (by conventng an array name I 1 a pointer as discussed in
6 2 2 I j Thus the only operator that can be applred IO m array declared with storage-class specitier
register is sizeof

58 Language

ISO/lEC 9899 1990 (El

Constraints

Each list of type specifiers shall be one of the following sets (delimited by commas. when
there is more than one set on a line); the type specifiers may occur in any order. possibly
intermixed with the other declaration specifiers.

- void

- char

- signedchar

- unsignedchar

- shorksigned short.short int. or signedshort int

- unsignedshort. or unsignedshortint

- int. signed. signed int. or no type specifiers

- unsigned.orunsignedint

- long,signedlong.longint.orsignedlongint

- unsignedlong. or unsignedlongint

- float

- double

- long double

- struct-or-union specifier

- enum-specifier
- typedef-name

Semantics

Specifiers for structures. unions. and enumerations are discussed in 6.5.2.1 through 6.523.
Declarations of typedef names are discussed in 6.5.6. The characteristics of the other types are
discussed in 6. I .2.5.

Each of the above comma-separated sets designates the same type, except that for bit-fields.
the type signed int (or signed) may differ from int (or no type specifiers).

Forward references: enumeration specifiers (6.5.2.2). structure and union specifiers (6.5 2.1).
tags (65.2 3). type detinitions (6.5 6)

6.5.2.1 Structure a.nd union specifiers

Syntax

SII'IIL t-01 -roriofl
struct
union

St1 IIL t-h lor-utlorr-II SI
ttr IlL t-&c IUI uti/)lr
st/ II(t-&c lur-utiotr-list stmc t-dec luratiou

Language 59

-
.- ..- -_, ,--. . . “... _ ., . _

ISO/IEC 9899: 1990 (E)

struct-declaration
spectjier-qualifier-list strut t-declarator-list ;

specijer-qualifier-list.
type-specifier specifier-qualijier-list

OP’ type-quafifrer specifier-quafifrer-IistaP,

struct-declarator-list
stru(t-declarator
struct-declarator-list , strut t-dec larator

strut t-dec larator
declarator
declaratbrop, : corjstarlt-eywession

Constraints

A structure or union shall not contain a member with incomplete or function type. Hence it
shall not contain an instance of itself (but may contain a pointer to an instance of itself).

The expression that specifies the width of a bit-field shall be an integral constant expression
that has nonnegative value that shall not exceed the number of bits in an ordinary object of
compatible type If the value is zero, the declaration shall have no declarator.

Semantics

As discussed in 6.125, a structure is a type consisting of a sequence of named members.
whose storage is allocated in an ordered sequence. and a union is a type consisting of a sequence
of named members, whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the members
of the structure or union. If the struct-declaration-list contains no named members, the behavior
is undefined The type is incomplete until atter the } that terminates the list.

A member of a structure or union may have any object type In addition, a member may be
declared to consist of a specified number of bits (including a s ign bit, if any). Such a member is
called a hit-field:“’ its width is preceded by a colon.

A bit-field shall have a type that is a qualified or unqualified version of one of int.
unsigned int. or s igned int. W hether the high-order bit position of a (possibly qualilied)
“plain” int bit-field is treated as a s ign bit i\ implementation-defined A bit-field is interpreted
a> an integral type consisting of the specitied number of bits

An implementation may allocate any addrrs\able storage unit large enough to hold a bit-field.
If enough space remains. a bit-field that immediately follow5 another bit-field in a structure shall
be packed into adjacent bits of the same umt It insufticient space remains. whether a bit-field
that does not fit is put into the next unit or overlaps adjacent units is implementation-defined
The order of allocation of bit-fields within a unit thigh-order 10 low-order or low-order to high-
order) is implementation-defined The alignment of the addressable storage unit is unspecified.

A bit-tield declaration with no declarator. hut only a colon and a width. indicates an unnamed
bit-tield ” As a special case of this, a bit-field structure member with a width of 0 indicates that

5~ The unan h (addre>h-of) operator may nor be applied IO a bit-tield object; thus. there are no pointers IO
or ar rays of bit-field obJecrs

6(1 An unnamed bit-field structure member ia useful for padding IO conform IO externally imposed layouts

60 Language

ISO/IEC 9899.1990 (E)

no further bit-field is to be packed into the unit in which the previous bit-field. if an!. was
placed.

Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type

Within a structure object. the non-bit-field members and the units in which bit-fields reside
have addresses that increase in the order in which they are declared. A pointer to a structure
object, suitably converted. points to its initial member (or if that member is a bit-field. then to the
unit in which it resides). and vice versa. There may therefore be unnamed padding within a
structure object. but not at its beginhing. as necessary to achieve the appropriate alignment.

The size of a union is sufficient to contain the largest of its members - The value of-at most
one of the members can be stored in a union object at any time. A pointer to a union object.
suitably converted. points tq each of its members (or if a member is a bit-field. then to the unit in
which it resides). and vice versa.

There may also be unnamed padding at the end of a structure or union. as necessary to
achieve the appropriate alignment were the structure or union to be an element of an array.

Forward references: tags (6.523).

6.5.2.2 Enumeration specifiers

Syntax

enum-spectjier.
enum identi’n
enum identijier W’

{ enumerator-list }

enumerator-list:
enumerator
enumerator-list , em4meratol

enwneratol
etw7~e~ution-~ wI.stam
etlllnlel.uti(~tl-L.O)ISlOllt = constant-e.\pression

Constraints

The expression that defines the value of an enumeration constant shall be an integral constant
expression that has a value representable as an int.

Semantics

The identitiers in an enumerator list are declared as constants that have type int and may
appear wherever such are permitted.h’ An enumerator with = defines its enumeration constant as
the value of the constant expression If the first enumerator has no =, the value of its
enumeration constant is 0 Each subsequent enumerator with no = defines its enumeration
constant as the value of the constant expression obtained by adding I to the value of the previous
enumeration constant. (The use of enumerators with = may produce enumeration constants with
values that duplicate other value> in the same enumeration.) The enumerators of an enumeration
are also known a\ irh members

Each enumerated type shall her compatible with an integer type. the choice of type is
implementation-detined

hl Thus, the Identifier\ ol enumeralion con?ltants declared in the same scope shall all be distinct trom each
orhcr and tram other idenritiers declared in ordinary declarators

.

Language 61

ISO/IEC 9899: 1990 (E)

Example

enum hue (chartreuse, bur-ndy, claret=20, winedark 1;
/*...*/
enum hue col, *cp;
/*...*/
co1 = claret;
CP = hcol;
/*...*/
/*... */ (*cp != burgundy) /*...*/

makes hue the tag of an enumeration. and then declares co1 as an object that has that type and
cp as a pointer to an object that has that type. The enumerated values are in the set { 0. I. 30.
21 }.

Forward references: tags (6.5.2.3)

6.5.2.3 Tags

Semantics

A type specifier of the form

or
struck-ot -mim identi’er (strm I-de1 hotion-list)

enum identijer { enumeraror-list)

declares the identifier to be the tag of the structure, union, or enumeration specified by the list.
The list defines the wucmre conrent. union (otmtv. or enwneration content. If this declaration
of the tag is visible. a subsequent declaration that uses the tag and that omits the bracketed list
specifies the declared structure, union, or enumerated type. Subsequent declarations in the same
scope shall omit the bracketed list.

If a type specifier of the form

.wm t-or-totim identijiet

occurs prior to the declaration that define\ the content. the structure or union is an incomplete
type h2 It declares a tag that specifies a type that may be used only when the size of an object of
the specified type is not needed. ” If the type is to be completed. another declaration of the tag
in the same scope (but not in an enclosed block. which declares a new type known only within
that block) shall define the content. A declaration of the form

slricc 1-m -rotion idctirifiet ;

specifies a structure or union type and declare5 a tag. both visible only within the scope in which
the declamtion occurs It specifies a new type distinct from an> type with the Sdrne tag in an
enclosing scope (if any)

A type specifier of the form

62 A hlmilar con\tructmn with enum doe\ noI C~I\I and i\ not nece\>aq as there can be no mutual
dependencle\ betueen the declaration of an enumcratcd type and an) other type

hl II i\ noI needed for example. when a typcdet name I\ declared to be a specitier for a structure or union.
or when ;i pomler IO or a function retummg a structure or union is being declared. (See incomplete
rype\ In 6 I 2 5) The specitication shall be complere More such a function is called or defined

61 Language

ISO/IEC 9899 1990 (E,

Or

struct-or-union { smct-dec laration-list }

enum { enumerator--list)

specifies a new structure, union. or enumerated type, within the translation unit. that can onl! be
referred to by the declaration of which it is a ~at-t.~

Examples

I. This mechanism allows declaration of a self-referential structure.

struct tnode (
int count;
struct tnode *left, *right;

1;

specifies a structure that contains an integer and two pointers to objects of the same type
Once this declaration has been given. the declaration

struct tnode s, l sp;

declares s to be an object of the given type and sp to be a pointer to an object of the
given type. With these declarations. the expression sp->left refers to the left struct
tnode pointer of the object to which sp points; the expression s. right->count

' designates the count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;
!CNODE *left, *right;

1;
TNODE s, l sp;

2. To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures. the declarations

struct sl { struct 92 *s2p; /*...*/ }; /* Dl */
struct s2 { struct sl *sip; /*...*/ }; /* D2 */

specify a pair of structures that contain pointers to each other. Note, however, that if s2
were already declared as a tag in an enclosing scope, the declaration Dl would refer to it.
not to the tag 92 declared in D2. To eliminate this context sensitivity. the declaration

struct s2;

may be inserted ahead if Dl. This declares a new tag s2 in the inner scope: the
declaration D2 then completes the hpecifcation of the new type.

Forward references: type definitions (63.6)

6-l Of cour\c. when the declaration ih of a rypedef name. subsequent declarations can make use of the
rypedet name to declare objecls having the specitied structure. union. or enumerated type

Language 63

ISO/lEC 9899: 1990 (E)

6.5.3 Type qualifiers

Syntax

rjpe-qualifier
const
volatile

Constraints

The same type qualifier shall not appear more than once in the same specifier list or qualifier
list, either directly or via one or more typedefs.

Semantics

The properties associated with qualified types are meaningful only for expressions that are
IvaIues.65

If an attempt is made to modify an object defined with a const-qualified type through use of
an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer
to an object defined with a volatile-qualified type through use of an lvalue with non-volatile-
qualified type, the behavior is undefined.66

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring to such
an object shall be evaluated strictly according to the rules of the abstract machine. as described in
5.1.2.3. Furthermore. at every sequence point the value last stored in the object shall agree with
that prescribed by the abstract machine, except as modified by the unknown factors mentioned
previously.67 What constitutes an access to an object that has volatile-qualified type is
implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is so-
qualified, not the array type. If the specification of a function type includes any type qualifiers,
the behavior is undefined.6”

For two qualified types to be compatible. both shall have the identically qualified version of a
compatible type: the order of type qualifiers within a list of specifiers or qualifiers does not affect
the specified type.

Examples

1. An object declared

extern const volatile int real-time-clock;

may be moditiable by hardware. but cannot be assigned to. incremented, or decremented.

2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type.

65 The implementation may place a const ohjecr rhai I\ noI volatile in a read-only region of srorage
Moreover. the implementation need not allo~a~c \toragc lor such an object if its address is never used

66 This applies IO those objects that behave ;I\, it the! uerc detined with qualified types. even if they are
never actually defined as objects in the program (\uch a\ an object at a memory-mapped input/output
address)

67 A volatile declaration may be used IO dehcribc an object corresponding IO a memory-mapped
mput/output pon or an object accessed by an a\?nchronou\l> interrupting function Actions on objects
so declared <hall nor be “optimized out” h! an lmplementatmn or reordered except as permitted by the
rules for evi ualing expressions

6X Both of these can only occur through the use ot typedefs

64 Language

ISO/IEC 9899.1990 (I?,

const struct s { int mem; 1 Cs = { 1 1;
struct 8 ncs; /* the object ncs is mod$ahle */
typedef int A[2][3];
const A a = (t4, 5, 6), (7, 8, 911; /* arra! of ova\ of const int */
int *pi;
const int *pci;

ncs = cs; /* valid */
cs = ncs; / * l?olutes modifiable Ivalue L onstraint jo~ = * /

Pi = hncs .mem; /* valid * /

Pi = hCS.rnemi /* IYolates t+e cwurrainrs f% = */
pci = hcs.mem; /* -valid */

Pi = a[O]; /* in\,alid a[01 bus ryw "const int *" */

6.5.4 Declarators
Syntax

dec?a, utm
pointer r,~t direct-declarator

dir ec t-dec iarartn
identifier
(declaratnr)

direct-declarator [constant-expression]

direct-dec larator (dorameter-tye-list a{’
direct-declurator (identifier--listopt)

pointer
* rype-qualifier--list

opt * type-qualifier-list c,pt pointer

type-qttalifrer-list
type-qtralifiel
t\pe-yitulijicr-list type-qualifiei

purumettv -type-lirt
pm umeter -litt
put umetel -list , . . .

put umetet -litt

Semantics

Each declarator declares one identifier. and asserts that when an operand of the same form as
the declarator appears in an expression. it designates a function or object with the scope. storage
duration. and type indicated by the declaration specifiers

In the tollowing subclauses. consider a declaration .

T Dl

Language 65

ISO/IEC 9899: 1990 (E)

where T contains the declaration specifiers that specify a type. 7 (such as int) and Dl is a
declarator that contains an identifier idenr. The type specified for the identifier idew in the
various forms of declarator is described inductively using this notation.

If, in the declaration "T Dl." Dl has the form

identijer

then the type specified for ident is T.

If, in the declaration "T Dl." Dl has the form

then ident has the type specified by the declaration "T D.” Thus. a declarator in parentheses is
identical to the unparenthesized declarator. but the binding of complex declarators may be altered
by parentheses.

Implementation limits

The implementation shall allow the specification of types that have at least 12 pointer. array.
and function declarators (in any valid combinations) modifying an arithmetic, a structure. a union.
or an incomplete type. either directly or via one or more typedefs.

Forward references: type definitions (6.5.6).

6.5.4.1 Pointer declarators
Semantics

If, in the declaration "T Dl," Dl has the form

* type-qualifier-list D
*pt

and the type specified for ident in the declaration "T D" is “derived-declarator-ype-list T,”
then the type specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T.”
For each type qualifier in the list. ident is a so-qualilied pointer

For two pointer types to be compatible. both shall be identically qualified and both shall be
pointers to compatible types.

Example

The following pair of declarations demonstrate5 the difference between a “variable pointer to
a constant value” and a “constant pointer to a variable value ”

const int l ptr to-constant;
int *const constantgtr;

The contents of an object pointed to by ptr-to-constant shall not be modified through that
pomter. but ptr-to-constant itself ma\ he changed to point to another object. Similarly.
the content\ of the int pointed to by constantgtr may be modified. but constantgtr
itself shall always point to the same location

The declaration of the constant pointer constantgtr may be clarified by including a
detinition tor the type “pointer to int.”

typedef int *intgtr;
const intgtr constantgtr;

declares constantgtr as an object that ‘XIS type “const-qualii ied pointer to int.”

.

66 Language

ISO/IEC 9899.1990 (E)

654.2 Array declarators

Constraints

The expression delimited by [and] (which specifies the size of an array) shall be an integral
constant expression that has a value greater than zero.

Semantics

If, in the declaration “T Dl.” Dl has the form

D [(.ortstant-c~pr-ession O/7/]

and the type specified for ident in the declaration "T D" i,s “der-ived-dec laratm -tywli.st 7.”
then the type specified for idmi is “doil,ed-dec.larorn, -ye-list array of 7.“‘” If the size ii not
present, the array type is an incomplete type

For two array types to be compatible. both shall have compatible element types. and if both
size specifiers are present. they shall have the same value

Examples

I. float fa[ll], *afp[l'l];

declares an array of float numbers and an array of pointers to float numbers.

2. Note the distinction between the declarations

extern int *x;
extetn int y[] ;

The first declares x to be a pointer to int: the second declares y to be an array of int of
unspecified size (an incomplete type), the storage for which is defined elsewhere.

Forward references: function definitions (6.7.1). initialization (6.5.7).

6.5.4.3 Function declarators (including prototypes)

Constraints

A function declarator shall not specify a return type that is a function type or an array type.

The only storage-class specifier that shall occur in a parameter declaration is register.

An identifier list in a function declarator that is not part of a function definition shall be
empty.

Semantics

If. in the declaration “T Dl.” Dl has !he form

D (/XII utnl’te1 -t\/‘dr \t)
or

D (idcrrtificv -/i\t rlpl)

and the type specitied tor itk~r m the declaration "T D” is “deked-dec /orator-type-list T.”
then the type specilied tor it/cut i\ “du II cd-kc loruto~ -tywlist function returning T.”

A parameter type list specitie\ the types of. and may declare identifiers for, the parameters of
the tunction. It the IISI terminate\ Hith an rllipG5 (, . . .). no information about the number or
types of the parameter\ after the Lemma i\ supplied “I The special case of void as the only

hY When hevera “am11 of” bpecilicatlon\ are adjacent. a multidimensional array is declared
70 The mticroh Mined in the <stdarg. h> header (7 8) may be used to access arguments that correspond

to the ellipsis

Language 67

ISO/IEC 9899: 1990 (E)

item in the list specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses around
the identifier for a declarator.

The storage-class specifier in the declaration specifiers for a parameter declaration. if present.
is ignored unless the declared parameter is one of the members of the parameter type list for a
function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty list
in a function declarator that is part of a function definition specifies that the function has no
parameters. The empty list in a function declarator that is not part of a function definition
specifies that no information about the number or types of the parameters is supplied.”

For two function types to be compatible. both shall specify compatible return types”
Moreover. the parameter type lists. if both are present. shall agree in the number of parameters
and in use of the ellipsis terminator: corresponding parameters shall have compatible types. If
one type has a parameter type list and the other type is specified by a function declarator that is
not part of a function definition and that contains an empty identifier list. the parameter list shall
not have an ellipsis terminator and the type of each parameter shall be compatible with the type
that results from the application of the default argument promotions. If one type has a parameter
type list and the other type is specified by a function definition that contains a (possibly empty)
identifier list. both shall agree in the number of parameters, and the type of each prototype
parameter shall be compatible with the type that results from the application of the default
argument promotions to the type of the corresponding identifier. (For each parameter declared
with function or array type, its type for these comparisons is the one that results from conversion
to a pointer type, as in 6.7.1. For each parameter declared with qualified type, its type for these
comparisons is the unqualified version of its declared type.)

Examples

I The declaration

int f (void), *fip(), (*pfi) 0;

declares a function f with no parameters returning an int. a function fip with no
parameter specification returning a pointer to an int. and a pointer pfi to a function with
no parameter specification returning an int. It is especially useful to compare the last
two The binding of *fip() is * (fip 0) . so that the declaration suggests. and the
same construction in an expression requires. the calling of a function fip. and then using
indirection through the pointer result to yield an int In the declarator (*pfi) () . the
extra parentheses are necessary to indicate that indirection through a pointer to a function
yields a function designator. which i\ then used to call the tunction: it returns an int.

If the declaration occurs outside 01 any Iunction. the identifiers have file scope and
external linkage. If the declaration occur\ inside ;I function. the identifiers of the functions
f and fip have block scope and either internal or external l inkage (depending on what file
scope declarations for these identitiers are visible). and the identifier of the pointer pfi has
block scope and no linkage.

2 The declaration

7 I See “future language directions” (6 9 41
71 If both function types are “old style.” parameter t>pe\ are not compared

6X Language

ISO/IEC 9899: 1990 (E)

int (*apfi[3])(int *x, int *y);

declares an array qpfi of three pointers to functions returning int Each of these
functions has two parameters that are pointers to int. The identifiers x and y are declared
for descriptive purposes only and go out of scope at the end of the declaration of apfi

3. The declaration

int (*fpfi(int (*) (long), int)) (int, . ..).

declares a function fpfi that returns a pointer to a function returning an int The
function fpfi has two parameters: a pointer to a function returning an int (with one
parameter of type long). and an int. The pointer returned by fpfi points to a function
that has one int parameter and accepts zero or more additional arguments of any type.

Forward references: function definitions (6 7.1). type names (6.5.5).

6.5.5 Type names
Syntax

type-tlanlc
spec’ifre~-qlralifier-list abstract-dechratot opr

ahtt~ar,t-dec,lu~atol
pointer
poititet o,~t direct-abstr-act-declaratot

direct-abstract-declarator
(ahstsac.t-dec.larat[)~)

direct-abstract-deciaratol
direct-abstract-deciarator zi

[constant-eqvession
(pa~a~ete~-rype-iisto~t)

]

Semantics

In several contexts. it is desired to specify a type. This is accomplished using a type name.
which is syntactically a declaration for a function or an object of that type that omits the
identi tier ”

Example

The constructions

(a) int
(b) int *
(Cl int l [3]
(d) int (*)(3]
(e) int *()
(f) int (*) (void)
(E) int (*const [])(unsigned int, . ..)

name re\pectivcl! the type\ (a) int. (b) pointer to int. (c) array of three pointers to int. (d)
pointer fo an ama\ ot three into. (c) tunction with no parameter specification returning a pointer
to int. (f) pointer to tuncllon with no parameters returning an int. and (g) array of an
unspecitied number of con\t;tn1 polntcr\ 10 functions, each with one parameter that has type
unsigned int and an un\pccilird number of other parameters. returning an int. ’

73 A\ indicated h!, the \>ma\ cmp~! parentheses in a type name are interpreted ah “lunction with no
parameter *pcclticatlon ’ rather than redundant parentheses around the omitred identitier

Language 69

ISO/IEC 9899: 1990 (E)

6.5.6 Type definitions
Syntax

typedef-name
identijer

Semantics

In a declaration whose storage-class specifier is typedef. each declarator detines an
identifier to be a typedef name that specifies the type specified for the identifier in the waj
described in 6.5.3. A typedef declaration does not introduce a new type. only a synonym for
the type so specified. That is. in the following declarations: .

typedef T type-ident;
type-ident D;

type-ident is defined as a typedef name with the type specitied by the declaration specifiers
in T (known as T), and the identifier in D has the type “deri\,ed-dec.larator--!\pe-list T” where
the der-ired-declarator-type-/ist is specified by the declarators of D A typedef name shares the
same name space as other identifiers declared in ordinary declarators If the identifier is
redeclared in an inner scope or is declared as a member of a structure or union in the same or an
inner scope, the type specifiers shall not be omitted in rhe inner declaration.

Examples

1. After

typedef int MILES, KLICKSP();
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP *raetricp;
complex x;
complex 2, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to
function with no parameter specification returning int.” and that of x and z is the
specified structure: zp is a pointer fo such a structure The object distance has a type
compatible with any other int object

2 After the declarations

typedef struct sl .{ int x; } tl, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type tl and the type pointed lo b) tpl are compatible Type tl is also compatible with
type struct sl. but not compatible with the types struct 32. t2, the type pointed to
by tp2, and int

3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;

1;

declare a typedef name t with type signed int. a typedef name plain with type int,
and a structure with three bit-field members. one named t that contains values in the range

70 Language

ISO/lEC 9899 I990 (E I

[O.lS], an unnamed const-qualified bit-field which (if it could be accessed) would contain
values in at least the range [- 15.+15]. and one named r that contains values in the range
[0,31] or values in at least the range [- 15.+15]. (The choice of range is implementstion-
defined.) The first two bit-field declarations differ in that unsigned is a type specifier
(which forces t to be the name of a structure member). while const is a type qualifier
(which modifies t which is still visible as a typedef name) If these declarations are
followed in an inner scope by

t f(t (t));
long t;

then a function f is declared with type “function returning s+gned, int with one
unnamed parameter with type pointer to function returning signed int with one
unnamed parameter with type signed int.” and an identifier t with type long.

4. On the other hand. typedef names can be used to improve code readability All three of the
following declarations of the signal function specify exactly the same type. the tirst
without making use of any typedef names.

typedef void fv(int), (*pfv) (int);

void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *);
pfv signal(int, pfv);

Forward references: the signal function (7.7.1.1).

6.57 Initialization
Syntax

initiaikei.
assignment-e.vpression
{ initializer-list)
(initializef -lirt ,)

itlitializer-lirt
irCtiuli:er
itlitiulircr-list , initialkei

Constraints

There shall be no more initializers in an initializer list than there are objects to be initialized.

The type of the entity to be initialized shall be an object type or an array of unknown size

All the expression\ in an initializer for an object that has static storage duration or in an
initializer list tor an object that ha\ aggregate or union type shall be constant expressions

If the declaration of an identitier has block scope. and the identifier has external or internal
linkage. the declaration hhnll ha\c no initializer for the identifier.

Semantics

An initializer specitieh the initial value stored in an object.

All unnamed structure or union members are ignored during initialization.

If an object that ha> automatic storage duration is not initialized explicitly. its value is
indetelminate.74 If an object that ha\ static storage duration is not initialized explicitly. it is

Language 71

ISO/IEC 9899: 1990 (E)

initialized implicitly as if every member that has arithmetic type were assigned 0 and every
member that has pointer type were assigned a null pointer constant.

The initializer for a scalar shall be a single expression. optionally enclosed in braces. The
initial value of the object is that of the expression. the same type constraints and conversions as
for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

A brace-enclosed initializer for a union object initializes the member that appears tirst in the
declaration list of the union type.

The initializer for a structure or union object that has automatic storage duration either shall
be an initializer list as described below. or shall be a single expression that has compaiible
structure or union type. In the latter case. the initial value of the object is that of the expression.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

An array of character type may be initialized by a character string literal. optionally enclosed
in braces. Successive characters of the character string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with wchar-t may be initialized by a wide string
literal, optionally enclosed in braces. Successive codes of the wide string literal (including the
terminating zero-valued code if there is room or if the array is of unknown size) initialize the
elements of the array.

Otherwise, the initializer for an object that has aggregate type shall be a brace-enclosed list of
initializers for the members of the aggregate. written in increasing subscript or member order; and
the initializer for an object that has union type shall be a brace-enclosed initializer for the first
member of the union.

If the aggregate contains members that are aggregates or unions, or if the first member of a
union is an aggregate or union. the rules apply recursively to the subaggregates or contained
unions. If the initializer of a subaggregate or contained union begins with a left brace. the
initializers enclosed by that brace and its matching right brace initialize the members of the
subaggregate or the tirst member of the contained union. Otherwise. only enough initializers
from the list are taken to account for the members of the subaggregate or the first member of the
contained union: any remaining initializers are left to initialize the next member of the aggregate
of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall be initialized implicitly the same as objects that have static
storage duration.

if an array of unknown size is initialized. IIS size is determined by the number of initializers
provided for its elements. At the end of its initializer list. the array no longer has incomplete
‘Ype.
Examples

I The declaration

int x[] = 1 1, 3, 5 1;

detines and initializes x as a one-dimensional array object that has three elements, as no
size was specified and there are three initializers

7-t Unlike in the base document. any automatic duration object may be initialized

73 Language

ISO/lEC 9899:1990 (E)

2 The declaration

float y[4][3] = {
f 1, 3, 5 1,
1 2, 4, 6 1,
t 3, 5, 7 1,

I;

is a definition with a fully bracketed initialization: 1. 3. and 5 initialize the first roti of y
(the array object y[O]). namely y[O] [O]. y[O] 111. and y[O] [2]. Likewise the next
two lines initialize y[l] and’y[2]. The initializer ends early. so y [3] is initialized with
zeros. Precisely the same effect could have been achieved by _

float y[4][3] = {
1, 9, 5, 2, 4, 6, 3, 5, 7

1;

The initializer for y [0] does not begin with a left brace. so three items from the list are
used. Likewise the next three are taken successively for y [l] and y [2] .

3. The declaration

float z[4] 131 = {
{ 1 I, { 2 1, t 3 I, (4 I

1;

initializes the first column of z as specified and initializes the test with zeros.

4. The declaration

struct { int a[31, b; 1 w[l = { (1 I, 2 I;

is a definition with an inconsistently bracketed initialization. It defines an array with two
element structures: w [0] . a [0] is I and w [l] . a [0] is 2; all the other elements are zero.

5 The declaration

short q[4][3][2] = {
t 1 1,
{ 2, 3 I,
t 4, 5, 6 I

1;

contains an incompletely but consistently bracketed initialization. It defines a three-
dimensional array object: q[O] [0] [0] is I. q[l] [0] [0] is 2. q[l] [0] [l] is 3. and
4. 5. and 6 initialize q[2] [0] [O]. q[2] [0] [l], and q[2] [l] [0], respectively: all
the rest are zero. The initializer for q[O] [0] does not begin with a left brace, so up to
six items from the current list may be used. There is only one. so the values for the
remaining tive elements are initialized with zero. Likewise, the initializers for q[l] [0]
and q[2] [0] do not begin with a left brace. so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of
the lists. a diagnostic messrrge would have been issued. The Same initialization result could
have been achieved by.

short q[4] [3] [2] = {
1, 0, 0, 0, 0, 0,
2, 3, 0 0, 0, 0,
4, 5, 6

I;

or by:

Language 73

ISO/IEC 9899: 1990 (E)

short qI41 131 121 = I
{

{ 1 1,
1,
i

l 2, 3 II
1,
I

1 4, 5 1,
I 6 1,

1
1;

in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are. in
general, less likely to cause confusion.

6. One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[] ;

the declaration

Aa= {I, 21, b = (3, 4, 51;

is identical to

int a[] = {l, 2], b[] = {3, 4, 5);

due to the rules for incomplete types.

7. The declaration

char s[] = "abc", t[3] = “abc”;

defines “plain” char array objects s and t whose elements are initialized with character
string literals. This declaration is identical to

char s[] = { 'a', 'b', 'c', '\O' },
t[] = { 'a', 'b', 'c');

The contents of the arrays are moditiable. On the other hand, the declaration

char *p = "abc";

defines p with type “pointer to char" that is initialized to point to an object with type
“array of char" with length 4 uhose elements are initialized with a character string
literal. If an attempt is made to use p to modify the contents of the array. the behavior is
undetined

Forward references: common definitions <stddef . h> (7 1 5)

Language

ISO/IEC 9X99.1990 (E)

6.6 Statements

Syntax

statement
labeled-statement
compound-statement
expression-statement
selec tioti-statement
iterarion-statement
jwnp-statement

Semantics

A statement specifies an action to be performed. Except as indicated. statements are executed
in sequence.

A fir11 e.vpressiorl is an expression that is not part of another expression. Each of the
following is a full expression: an initializer: the expression in an expression statement; the
controlling expression of a selection statement (if or switch): the controlling expression of a
while or do statement: each of the three (optional) expressions of a for statement: the
(optional) expression in a return statement. The end of a full expression is a sequence point.

Forward references: expression and null statements (6.6.3). selection statements (6.6.4).
iteration statements (6.6.5). the return statement (6.6.6.4).

6.6.1 Labeled statements

Syntax

labeled-statement:
identifier : statement

Constraints

case constant-e.rpression : statement
default : statement

A case or default label shall appear only in a switch statement. Further constraints on
such labels are discussed under the switch statement.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name. Labels
in themselves do not alter the flow of control. which continues unimpeded across them.

Forward references: the goto statement (6.6 6.1). the switch statement (6.6 4.2).

6.6.2 Compound statement, or block

Syntax

c~onl~~o~~t~~l-.sruten~c~lt
{ drt lo~otio~i-litt wtemew-list o/n Ol’l 1

dec h otiorAist
dei lurutiw
dcc lurutirm-lirt dcv lu, utio,r

rtatiwent-litt
ctafemenr
~tutenic~it-liyt stut~wwit

Language 7.5

ISO/IEC 9899:1990 (E)

Semantics

A compound statement (also called a block) allows a set of statements to be grouped into one
syntactic unit, which may have its own set of declarations and initializations (as discussed in
6.1.2.4). The initializers of objects that have automatic storage duration are evaluated and the
values are stored in the objects in the order their declarators appear in the translation unit.

6.6.3 Expression and null statements
Syntax

expr-ession-stafement
expression * opt ’

Semantics

The expression in an expression statement is evaluated as a void expression for its side
effects.”

A null statement (consisting of just a semicolon) performs no operations.

Examples

I. If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void
expression by means of a cast:

int p(int);
/*...*/
(void)p(O);

2. In the program fragment

char l s;
/*...*/
while (*s++ != '\O')

a null statement is used to supply an empty loop body to the iteration statement.

3. A null statement may also be used to carry a label just before the closing) of a compound
statement

while (100~1) (
/*...*/
while (100~2) (

/*...*/
if (want-out)

goto end-loopl;
/*...*/

1
/*...*/

end-loopl: ;
1

Forward references: iteration statements (6.6.5)

75 Such as assignments. and function calls which have side effects.

76 Language

ISO/lEC 9899: 1990 (E)

6.6.4 Selection statements
Syntax

selection-statement.
if (expression) statement

Semantics

if (e.vpr-ession) statement else statement
switch (expression) statement

A selection statement selects among a set of statements depending on the value of a
controlling expression.

6.6.4.1 The if statement
Constraints

The controlling expression of an if statement shall have scalar type.

Semantics

In both forms. the first substatement is executed if the expression compares unequal to 0. In
the else form. the second substatement is executed if the expression compares equal to 0. If
the first substatement is reached via a label, the second subsratemenr is not executed.

An else is associated with the lexically immediately preceding else-less if that is in the
same block (but not in an enclosed b&k).

6.6.4.2 The switch statement
Constraints

The controlling expression of a switch statement shall have integral type. The expression
of each case label shall be an integral constant expression. No two of the case constant
expressions in the same switch statement shall have the same value after conversion. There
may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constant expressions with values that duplicate case
constant expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to. into. or past the statement that is the .witch
hoc/\. depending on the value of a controlling expression. and on the presence of a default
label and the values of any case labels on or in the switch body. A case or default label is
accessible only within the closest enclosing switch statement.

The integral promotion> are performed on the controlling expression. The constant expression
in each case label ih convened IO the promoted type of the conrrolling expression. If a
converted value marche\ that of the promoted controlling expression, control jumps to the
statement following rhe matched case label. Otherwise, if there is a default label. control
jumps to the labeled statement If no converted case constant expression matches and there is
no default label. no pan of the switch body is executed.

Implementation limits

As discussed previousI\ (S.2.4 I). the implementation may limit the number of case values
in a switch statement

Example

In the artificial program fragment

Language 77

ISO/IEC 9899: 1990 (El

switch (expr)
t

int i = 4;
f(i);

case 0:
i = 17; /* falls rhuqqh irlto default code */

default:
printf("%d\n", i);

1
the object whose identifier is i exists with automatic storage duraiion (within the block) but is
never initialized. and thus if the controllin g expression has a nonzero value. the call to the
printf function will access an indeterminate value. Similarly. the call to the function f Fannot
be reached.

6.6.5 Iteration statements
Syntax

iteration-statement.

Constraints

while (espression) statenlent
do statement while (e.\pression) ;
for (expression

w
; e.vpression - e.ipression

opt ’
ant) statement

The controlling expression of an iteration statement shall have scalar type.

Semantics

An iteration statement causes a statement called the loop body to be executed repeatedly until
the controlling expression compares equal to 0.

6.6.5.1 The while statement
The evaluation of the controlling expression takes place before each execution of the loop

body.

6.6.5.2 The do statement

The evaluation of the controlling expression takes place after each execution of the loop body.

6.6.5.3 The for statement

Except for the behavior of a continue statement in the loop body, the statement

for (expression-l ; e~presvion-2 ; e~prr.ssior~-3) statefnqU

and the sequence of statements

e.\prrssion- I ;
while (expression-2) {

stutenient
e..ipretsion-2 ;

1

are equivalent.”

76 Thus. erp~r.ssron-/ specities initializaiion tor the loop: ~~p~crrion--. 7 the c ntrolling expression. specifies
an evaluation made betore each iteration. such thur execution of the loop continues until the expression
compares equal to 0: expression-3 specities an operation (such as incrementing) that is performed after
each iteration

78 Language

ISO/IEC 9899.1990 (E)

Both cap,-essio,l-/ and e.\-prvssio?l-3 may be omitted. Each is evaluated as a void expression
An omitted e..\-prvssion-2 IS replaced by a nonzero constant

Forward references: the continue statement (6.6.6.1)

6.6.6 Jump statements
Syntax

jwnpsratenret7r

goto idet7rifrer ;

continue ;

break ;

Seniantics

return e.rpressiot7 .
opr ’

A jump statement causes an unconditional jump to another place

6.6.6.1 The goto statement
Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing
function

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label
in the enclosing function.

Example

It is sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

I. The general initialization code accesses objects only visible to the current function.

2 The general initialkation code is too large to warrant duplication.

3. The code to determine the next operation must be at the head of the loop. (To allow it to
be reached by continue statements. for example.)

/*...*/
got0 first-time;
for (;;I I

/ l tlrtct mit7e treat opcwtiot7 * /

/*. . .*/

if' (t7wd to tcit7irrctli:~~) (

/ * I c~it7itiolr-c,-rttrl~ c oiic */

/*...*/

first time:
-/* ,A ~~v7ct al it7itiulixriot7 c ode * /

/*. . .*/

continue;
1

Lanpuape 79

ISO/IEC 9899: 1990 (E)

6.6.6.2 The continue statement

Constraints

A continue statement shall appear only in or as a loop body

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is. to the end of the loop body. More precisely. in each of the
statements

while (/*...*/) { do i for (/*...*/) (_,
/*...*/ /*. . .*/ /*...*/
continue; continue; cant inue ;
/*...*/ /*...*/ /*...*/

contin: ; contin: ; contin: ;
1) while (/*...*/); 1

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin; .”

6.6.6.3 The break statement

Constraints

A break statement shall appear only in or as a switch body or loop body.

Semantics

A break statement terminates execution of the smallest enclosing switch or iteration
statement.

6.6.6.4 The return statement

Constraints

A return statement with an expression shall not appear in a function whose return type is
void

Semantics

A return statement terminates execution of the current function and returns control to its
caller A function may have any number of return statements. with and without expressions.

If a return statement with an expression ih executed. the value of the expression is returned
to the caller as the value of the function call expression. If the expression has a type different
from that of the tunction in which it appears. it is converted a)r if it were assigned to an object of
that type

If a return statement without an expression i\ executed. and the value of the function call
k used by the caller. the behavior is undetined. Reaching the } that terminates a function is
equivalent to executing 3. return statemenr N ithour an expreh\ion

77 Following the contin: label is a null slatemem

80 Language

ISO/lEC 9899:1990 (E)

6.7 External definitions
Syntax

translation-unit
external-declaration
translation-unit external-det laration

external-declaration
fitrlc.tiorl-de~rlitiorl
declaration

Constraints

The storage-class specifiers auto and register shall not appear in the declaration
specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with internal
linkage in a translation unit. Moreover. if an identifier declared with internal linkage is used in
an expression (other than as a part of the operand of a sizeof operator), there shall be exactly
one external definition for the identifier in the translation unit.

Semantics

As discussed in 5.1. I. 1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as “external” because
they appear outside any function (and hence have file scope). As discussed in 6.5, a declaration
that also causes storage to be reserved for an object or a function named by the identifier is a
definition.

An external definition is an external declaration that is also a definition of a function or an
object. If an identifier declared with external linkage is used in an expression (other than as part
of the operand of a sizeof operator), somewhere in the entire program there shall be exactly
one external definition for the identifier: otherwise. there shall be no more than one.78

6.7.1 Function definitions
Syntax

firric.tiorl-de~tzitiall
dci IUI ution-specificI s Up1 declarator declaration-list

apt
compound-statement

Constraints

The identifier declared in a function definition (which is the name of the function) shall have
a function type. a’r specifed h\ the declarator portion of the function definition.”

7X Thuh if an ldcntiticr declared uith cxwmal linkage is not used in an expression. there need be no
external detinuion lor it

7~ The mlent I\ rhat rhc type categor> in 2 luncrion definition cannot be inherited from a typedef:

typedef int l?(void); /* ppe P is ' 'jio~c rim oj no ar,qufnenf.s I em ning int" */
F f, g; /* f und g both huve t!pr comporihle nith F l /
F f { /*...*/) / l I4 HONG s\nro\li on.st,oinr cr,tn */

F g0 (: /*.. l / 1 /* H KONG dec ICIICS t/tot g ~ctwns u fwwtion */
int f(void) (/*...*/] /* KIC;HT f hur type (omputihlc~ with F */
int g0 { /*. l / 1 /* KKiHT g ltus type cwnpurihle u.ilh F l /
F l e(void) (/*...*/) /* e JC/W ns (I poinrer to 0 fitnr tion */
F *((e)) (void) [/*...*/) / l wnw porenthe.w.~ irrelelwnr * /
int (*fp) (void); / * fp points IO u ftcnc tiorr thor hur type F * /
F *Fp; / l Fp points to o fiorc lion that bus t.\‘pc F * /

Language 81

ISO/IEC 9899: 1990 (E)

The return type of a function shall be void or an object type other than array.

The storage-class specifier, if any. in the declaration specifiers shall be either extern or
static.

If the declarator includes a parameter type list. the declaration of each parameter shall include
an identifier (except for the special case of a parameter list consisting of a single parameter of
type void, in which there shall not be an identifier). No declaration list shall follow.

If the declarator includes an identifier list. each declaration in the declaration list shall have at
least one declarator. and those declarators shall declare only identifiers from the identitier list
An identifier declared as a typedef name shall not be redeclared as a parameter. The declarations
in the declaration list shall contain no storage-class specifier other than register and, no
initializations.

Semantics

The declarator in a function definition specifies the name of the function being deiined and
the identifiers of its parameters If the declarator includes a parameter type list, the list also
specifies the types of all the parameters: such a declarator also serves as a function prototype for
later calls to the same function in the same translation unit. If the declarator includes an
identifier list.xO the types of the parameters may be declared in a following declaration list Any
parameter that is not declared has type int.

If a function that accepts a variable number of arguments is defined without a parameter type
list that ends with the ellipsis notation, the behavior is undefined.

On entry to the function the value of each argument expression shall lx converted to the type
of its corresponding parameter, as if by assignment to the parameter. Array expressions and
function designators as arguments are converted to pointers before the call. A declaration of a
parameter as “array of type” shall be adjusted to “pointer to rype,” and a declaration of a
parameter as “function returning type” shall be adjusted to “pointer to function returning fype,”
as in 6.2.2.1. The resulting parameter type shall be an object type.

Each parameter has automatic storage duration Its identifier is an Ivalue.x’ The layout of the
storage for parameters is unspecified.

Examples

1. In the following.

extern int max (int a, int b)
I

return a > b ? a : b;
1

extern is the storage-class specifier and int i\ the type specifier (each of which may be
omitted as those are the detaults). max (int a, int b) i\ the tunctlon declarator: and

{ return a >b? a : b;)

is the function body. The following similar definition uvs the identifier-list form for the
parameter declarations:

xo See “future language directions” (6 9 5)
x 1 A parameter is in effecr declared at the head of the compound starement that constitutes the function

body, and therefore may not be redeclared in the function body (except m an enclosed block)

.

82 Language

ISO/IEC 0899 IYYO cE,

extern int max(a, b)
int a, b;

return a > b ? a : b;
1

Here int a, b; is the declaration list for the parameters. which ma) be omitted because
those are the defaults. The difference between these two detinitions is that the first form
act5 as a prototype declaration that forces conversion of the argument> of subsequent call>

to the function. whereah the second form may not

7 -. To pass one junction to another. one mi_ght say

int f(void);
/*...*/
g(f);

Note that f must be declared explicitly in the callin p function. as its appearance in the
expression g (f) was not followed by (. Then the definition of g might read

g(int (*funcp) (void))
I

/*. . .*/ (*funcp)() /* or funcp() . . . */
1

or. equivalently.

g(int func(void))

/*. . .*/ func() /* or (*func)() . . . */
1

6.7.2 External object definitions
Semantics

If the declaration ot an identifier for an object has file scope and an initializer, the declaration
is an external definition for the identitier.

A declaration of an identifier for an object that has file scope without an initializer. and
without a storage-clash specitier or with the storage-class specifier static. constitutes a
rlvlruri~ (’ rlejilliriolr If a translation unit contains one or more tentative definitions for an
identifier. and the translation unit contains no external definition for that identifier. then the
behavior is exacti! ah it‘ the trun&tion unit contains a file scope declaration of that identifier.
with the composite type air of the end of the translation unit. with an initializer equal to 0

If the declaration ot an identifier for an object is a tentative definition and has internal
linkage. the declared type hhall not be an incomplete type.

Example

int il = 1;
static int i2 = 2;
extern int i3 = 3;
int i4;
static int i5;

/ * clcjinitiotl. e.~ternul IinXage */
/* hjirlition. internal IinXqe */
/* dejinition. esterno/ liniqy */
/* tcwtati\.e definition. e.uernuI litkqe */
/* terituti~~e dejinition. internol linXusqe */

Language 83

ISO/IEC 9899:1990 (E)

int il; /* valid tentative dejinition. refers to previous */
int i2; /* 6.1 2.2 renders undefined. linkage disagreement */
int i3; / * valid tentative definition, refers to previous */
int i4; /* valid tentatilv definition. refers to previous */
int i5; /* 6.122 renders undefined. linkage disagreement */

extern int il; /* refers to previous. whose linkage is cvternal */
extern int i2; /* refer7 to previous, whose linkage is internal */
extern int i3; / * refers to previous, whose linkage is external * /
extern int i4; /* refers to previous. whose linkage is e.nernal */
extetn int i5; /* refers to presious. whose linkage is internal */

84 Language

ISO/IEC 9899: 1990 (E)

6.8 Preprocessing directives
Syntax

preprocessing-jle

cwop,

‘fyOlq~
group-part
group group-part

group-part
pp-tokens new-line
if-section

opt

c ontrol-line

if-section:
ifgro14p elif~qm4ps opt else-group

OP’
endif-line

if-grol4p
if constant-expression new-line group
ifdef identifier new*-line group

V’

ifndef identtjer new-line group;:

elif--groups .
eltf-group
eltf-groups elifgroup

elif-group:
elif constant-expression new-line groupopr

else-group:
else new-line group

OP’
endif-line

endif new-line

control-line
include
define
define
undef
line
error

p==gma

pp-tokens new-line
identijer replacement-list new-line
identifier Iparen identijer-list
identifier new-line

opt) replacement-list new-line

pp-tokens new-line
new-line
nens-line

/pawn.
the left-parenthesis character without preceding white-space

replacvnient-list t
pp-tckws opt

pp-toXens
preproc essity-trkvr
pp-tokri~ prcp’nt.esririS-tohen

new-line
the new-line character

Language 85

ISO/IEC 9899:1990 (E)

Description

A preprocessing directive consists of a sequ,ence of preprocessing tokens that begins with a #
preprocessing token that is either the first character in the source file (optionally after white space
containing no new-line characters) or that follows white space containing at least one new-line
character. and is ended by the next new-line character.x’

Constraints

The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducin, 0 # preprocessing token through just before
the terminating new-line character) are space and horizontal-tab (including spaces that have
replaced comments or possibly other white-space characters in translation phase 3)

Semantics

The implementation can process and skip sections of source files conditionally. include other
source files, and replace macros. These capabilities are called prep) ocessirrg , because
conceptually they occur before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion
unless otherwise stated.

6.8.1 Conditional inclusion
Constraints

The expression that controls conditional inclusion shall be an integral constant expression
except that: it shall not contain a cast: identifiers (including those lexicaily identical to keywords)
are interpreted as described belo~;~” and it may contain unary operator expressions of the form

defined identifier
or

defined (identifier)

which evaluate to I if the identifier is currently defined as a macro name (that is. if it is
predetined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive with the same subject identitier). 0 if it is not

Each preprocessing token that remains after all macro replacements have occurred shall be in
the lexical form of a token

Semantics

Preprocessing directives of the forms

check whether the controlling constant expression evaluates to nonzero

Prior to evaluation. macro invocations in the list of preprocessing tokens that will become the
controlling constant expression are replaced (except for those macro names modified by the
defined unary operator). just as in normal 1~x1 II the tohen defined is generated as a result

of this replacement process or use of the defined unary operator does not match one of the two

~2 Thu\ preprocehslng dIrectives are commonl) called “lmes ’ These “lines” have no other symactic
slgniticance ax all white space is equ~vale II rxccp~ in certain sItu;Llions during preprocessing (see the #
character \rrlng lIteral creation operator m L X 3 1. Ior example)

XA Because rhe conrrolling constant expression i\ r\alua~cd during translation phase 4. all identiliers either
are or are not macro names - there simpl) are no heywords. enumeration constams, etc.

86 Language

ISO/lEC 9899 1990 (E)

specified forms prior to macro replacement. the behavior is undefined. After all replacements due
to macro expansion and the defined unary operator have been performed. all remaining
identifiers are replaced with the pp-number 0. and then each preprocessing token is converted
into a token The resulting tokens comprise the controllin g constant expression which is
evaluated according to the rules of 6.4 using arithmetic that has at least the ranges specified in
5.2.4.2, except that int and unsigned int act as if they have the same representation as.
respectively. long and unsigned long. This includes interpreting character constants. which
may involve converting escape sequences into execution character set members Whether the
numeric value for these character constants matches the value obtained when an identical
character constant occurs in an expression (other than within a..#if or #elif directive) is
implementation-deiined ” Also. whether a single-character character constant may have a
negative value is implementation-detined

Preprocessing directives of the forms

ifdef identifier- tten4itte c~rotrpopr
ifndef idetttifret- tteu4itte group

*Pt
check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if ! defined identijer respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing
tokens are ignored. as are the other preprocessing tokens in the group. Only the first group
whose control condition evaluates to true (nonzero) is processed. If none of the conditions
evaluates to true. and there is a #else directive, the group controlled by the #else is
processed; lacking a #else directive, all the groups until the #endif are skipped.s’

Forward references: macro replacement (6.8.3), source file inclusion (6.8.2).

6.8.2 Source file inclusion
Constraints

A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics

A preprocessing directive of the form

include </I-C hot -seqrcettce> nendine

searches a sequence of implementation-defined places for a header identified uniquely by the
specilied sequence between the < and > delimiters. and causes the replacement of that directive
by the entire contents of the header How the places are specified or the header identilied is
implementation-detined.

X-t Thus. the constant expres\ion in the following #if directive and if statement is not guaranteed to
evaluate IO the same value in these IWO contexts

if ('2' - 'a' == 25)

X5 A\ indicated by the syntax. a preprocessing token shall not follow a #else or #endif directivt before
the terminating new-line character However. comments may appear anywhere in a source tile. including
within a preprocessing directive .

Language 87

ISOBEC 9899: 1990 (E)

A preprocessing directive of the form

include “q-char-sequence” new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the ” delimiters. The named source file is searched for in an
implementation-defined manner. If this search is not supported, or if the search fails, the
directive is reprocessed as if it read

include <h-char-sequence> new4itte

with the identical contained sequence (including > characters, if any) from the original directive.

A preprocessing directive of the form

include pp-tokens new-line

. (that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined
as a macro name is replaced by its replacement list of preprocessing tokens.) The directive
resulting after all replacements shall match one of the two previous formsn6 The method by
which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair
of ” characters is combined into a single header name preprocessing token is implementation-
defined.

There shall be an implementation-defined mapping between the delimited sequence and the
external source file name. The implementation shall provide unique mappings for sequences
consisting of one or more letters (as defined in 5.2.1) followed by a period (.) and a single
letter. The implementation may ignore the distinctions of alphabetical case and restrict the
mapping to six significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because
of a #include directive in another file. up to an implementation-defined nesting limit (see
5.2.4.1).

Examples

1. The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include '9nyprog.h"

2. This illustrates macro-replaced #include directives:

#if VEXSION == 1
#define INCFILE "vers1.h"

#alif VERSION == 2
#define INCFILE “verb2. h" /* and so on. */

#else
#define INCFILE "versN . h"

Uendif
#include INCFILE

Forward references: macro replacement (6.X.3).

86 Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2): thus. an expansion that results in two string literals is an invalid directive.

.

88 Language

ISO/IEC 9899: 1990 (E)

6.8.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the
same number, ordering, spelling. and white-space separation, where all white-space separations
are considered identical.

An identifier currently defined as a macro without use of lparen (an object-like macro) may be
redefined by another #define preprocessing directive provided that the second definition is an
object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using lparen (a funcrion-like macro) may be
redefined by another #define preprocessing directive provided that the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the
number of parameters in the macro definition, and there shall exist a) preprocessing token that
terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list for either
form of macro.

If a # preprocessing token, followed by an identifier, occurs iexically at the point at which a
preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name”’ to be
replaced by the replacement list of preprocessing tokens that constitute the remainder of the
directive. The replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-listopt) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers. whose scope extends from their
declaration in the identifier list until the new-line character that terminates the #define
preprocessing directive. Each subsequent instance of the function-like macro name followed by a
(as the next preprocessing token introduces the sequence of preprocessing tokens that is replaced
by the replacement list in the definition (an invocation of the macro). The replaced sequence af
preprocessing tokens is terminated by the matching) preprocessing token, skipping intervening
matched pairs of left and right parenthesis preprocessing tokens. Within the sequence of
preprocessing tokens making up an invocation of a function-like macro, new-line is considered a
normal white-space character.

X7 Since. by macro-replacemen time. all character constants and string literals are preprocessing tokens. not
sequences possibly containmg identifier-like subsequences (see 5.1 I .2, translation phases). they are
never scanned for macro names or parameters

Language 89

ISO/IEC 9899: 1990 (E)

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within the list
are separated by comma preprocessing tokens. but comma preprocessing tokens between
matching inner parentheses do not separate arguments. If (before argument substitution) any
argument consists of no preprocessing tokens. the behavior is undefined. If there are sequences
of preprocessing tokens within the list of arguments that would otherwise act as preprocessing
directives. the behavior is undefined.

6.8.3.1 Argument substitution

After the arguments for the invocation of a function-like niacro have been identified.
argument substitution takes place. A parameter in the replacement list. unless preceded by a # or
preprocessing token or followed by a ## preprocessing token (see below). is replaced by the
corresponding argument after all macros contained therein have been expanded. Before being
substituted, each argument’s preprocessing tokens are completely macro replaced as if they
formed the rest of the translation unit: no other preprocessing tokens are available.

6.8.3.2 The # operator

Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed
by a parameter as the next preprocessing token in the replacement list.

Semantics

If. in the replacement list, a parameter is immediately preceded by a # preprocessing token,
both are replaced by a single character string literal preprocessing token that contains the spelling
of the preprocessing token sequence for the corresponding argument. Each occurrence of white
space between the argument’s preprocessing tokens becomes a single space character in the
character string literal. White space before the first preprocessing token and after the last
preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each
preprocessing token in the argument is retained in the character string literal. except for special
handling for producing the spelling of string literals and character constants: a \ character is
inserted before each ** and \ character of a character constant or string literal (including the
delimiting ” characters). If the replacement that results is not a valid character string literal, the
behavior is undefined. The order of evaluation of # and ## operators is unspecified.

6.8.3.3 The ## operator

Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list
for either form of macro definition

Semantics

If. in the replacement list. a parameter is immediately preceded or followed by a ##
preprocessing token. the parameter is replaced by the corresponding argument’s preprocessing
token sequence.

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace. each instance of a ## preprocessing token in the
replacement list (not from an argument) is deleted and the preceding preprocessing token is
concatenated with the following preprocessing token. If the result is not a valid preprocessing
token. the behavior is undefined. The resulting token is available for further macro replacement.
The order of evaluation of ## operators is unspecified

90 Language

ISO/IEC 9899 1990 (E)

6.8.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted. the resulting preprocessing
token sequence is rescanned with all subsequent preprocessing tokens of the source tile for more
macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source tile’s preprocessing tokens), it is not replaced. Further. if any
nested replacements encounter the name of the macro being replaced. it is not replaced These
nonreplaced macro name preprocessing tokens are no longer available for further replacement
even if they are later (re)examined in contexts in which that macro name preprocessing token
would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a
preprocessing directive even if it resembles one.

6.8.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef
directive is encountered or (if none is encountered) until the end of the translation unit

A preprocessing directive of the form

undef idenrifrer- tten4itie

causes the specified identifier no longer to be defined as a macro name. It is ignored if the
specified identifier is not currently defined as a macro name.

Examples

1. The simplest use of this facility is to define a “manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

3. The following detines a function-like macro whose value is the maximum of its arguments.
II has the advantages of working for any compatible types of the arguments and of
generating in-line code without the overhead of function calling. It has the disadvantages
of evaluating one or the other of its arguments a second time (including side effects) and
generating more code than a function if invoked several times. It also cannot have its
address taken. as it has none

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

3 To illustrate the rules for redetinition and reexamination. the sequence

#define x
#define f(a)
#undef x
#define x
#define g
#define z
#define h
#define m(a)
#define w
#define t(a)

3
f(x * (a))

2
f
2 [Ol
9('
a (WI
Otl
a

f(y+l) + f(f (2)) % t(t(g) (0) + t) (1);
g(x+(3,4)-w) 1 h 5) 6: m

(f)^m(m);

Language 91

ISOflEC 9899:1990 (E)

results in

f(2 l (y+l)) + f(2 * (f(2 7 (z[Ol)))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-O,l)) I f(2 * (- 5)) 6 f(2 * (O,l))Am(O,l);

4. To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

#define str(s) #s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s I)= %d, x" # t 11= %s", \

x ## s, x ## t1 .'
#define INCFILE(n) vers ## n /* from prvkms #include e.tample */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW (t, world"

debug(1, 2);
fputs (str(strncmp("abc\Od", "abc", '\4') /* this goes away */

== 0) str(: @\n), s);
#include xstr(INCFILE(2). h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf(“x’* “1” “5 %d, x” “2” ‘I= $s”, xl, x2) ;
fputs("strnanp(\"abc\\Od\", \"abc\", '\\4') == 0" ": @\n", 8);
#include "vers2. h" (after macro replacement. before file access)
"hello";
"hello" 'I, world"

or. after concatenation of the character string literals.

printf("xl= %d, x2= %s", xl, x2);
fputs("strncmp(\"abc\\Od\", \"abc\", '\\4') == 0: @\n", s);
#include "vers2.h" (after mot IY) scplucement. before jile access)
“hello”;
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

S And finally. to demonstrate the redefinition rules. the following sequence is valid.

#define OBJ-LIKE (l-1)
#define OBJ-LIKE /* white space */ (l-l) /* other */
#define FTN-LIKE(a) (a 1
#define FTN-LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/ 1

But the following redefinitions are invalid

#define OBJ-LIKE (0) /* d~~rrent tden sequence */
#define OBJ-LIKE (1 - 1) /* tliff~ent nhite space */
#define F!l'N-LIKE(b) (a) / l tl~~erent purameter usage */
#define F!CN-LIKE(b) (b) / * di~ererlt parameter spelling * /

99 Language

ISO/IEC 9899 1990 (E,

6.8.4 Line control
Constraints

The string literal of a #line directive. if present. shall be a character string literal

Semantics

The line nunlhe, of the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5 I 1.2) while processing the source tile to
the current token

A preprocessing directive of the form

line digit-seqliem e uendine

causes the implementation to behave as if the following sequence of source lines begins with a
source line that has a line number as specified by the digit sequence (interpreted as a decimal
integer). The digit sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form

line digit-sequence “s-c bar-sequenceopt” new-line

sets the line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting
after all replacements shall match one of the two previous forms and is then processed as
appropriate.

6.8.5 Error directive
Semantics

A preprocessing directive of the form

error pp-tdeu~,,,,, uen -/inis

causes the implementation to produce a diagnostic message that includes the specified sequence
of preprocessing tokens.

6.8.6 Pragma directive
Semantics

A preprocessing directive of the form

pragma pp-tfkw~,,,,, f10+ -/itlc

cause5 the implementation to behave in an implementation-defined manner. Any pragma that is
not recognized by the implementntlon is ignored.

Language 93

ISO/IEC 9899: 1990 (E)

6.8.7 Null directive
Semantics

A preprocessing directive of the form

new-line

has no effect.

6.8.8 Predefined macro names
The following macro names shall be defined by the implementation.

LINE -- -a The line number of the current source line (a decimal constant).

FILE -- -- The presumed name of the source file (a character string literal).

DATE -- -- The date of translation of the source file (a character string literal of the form
“Mum dd yyyy”. where the names of the months are the same as those generated
by the asctime function. and the lirst character of dd is a space character if the
value is less than 10). If the date of translation is not available, an
implementation-defined valid date shall be supplied.

TIME -- -- The time of translation of the source file (a character string literal of the form
“hh:xmrt: ss” as in the time generated by the asctime function). If the time of
translation is not available, an implementation-defined valid time shall be supplied.

STDC -- -- The decimal constant I, intended to indicate a conforming implementation.

The values of the predefined macros (except for LINE and FILE) remain -- -- -- --
constant throughout the translation unit.

None of these macro names, nor the identifier defined. shall be the subject of a #define
or a tundef preprocessing directive. All predefined macro names shall begin with a leading
underscore followed by an uppercase letter or a second underscore.

Forward references: the asctime function (7 123.1).

94 Language

ISO/IEC 9899 I990 (E)

6.9 Future language directions
6.9.1 External names

Restriction of the significance of an external name to fewer than 31 characters or to onl! one
case is an obsolescent feature that is a concession to existing implementations.

6.9.2 Character escape sequences
Lowercase letters as escape sequences are reserved for future standardization Other

characters may be used in extensions.

6.9.3 Storage-class specifiers
The placement of a storage-class specifier other than at the beginning of the declaration

specifiers in a declaration is an obsolescent feature.

6.9.4 Function declarators
The use of function declarators with empty parentheses (not prototype-format parameter type

declarators) is an obsolescent feature.

6.9.5 Function definitions
The use of function definitions with separate parameter identifier and declaration lists (not

prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.9.6 Array parameters
The use of two parameters declared with an array type (prior to their adjustment to pointer

type) in separate lvalues to designate the same object is an obsolescent feature.

Language 95

ISO/IEC 9899:1990 (E)

7 Library

7.1 Introduction
7.1.1 Definitions of terms

A swing is a contiguous sequence of characters terminated by and including the first null
character. A “pointer to” a string is a pointer to its initial (lowest addressed) character. The
“length” of a string is the number of characters preceding the null character and its “value” is
the sequence of the values of the contained characters. in order.

A Ietter is a printing character in the execution character set corresponding to any of the 51
required lowercase and uppercase letters in the source character set. listed in 52.1.

The detimal-point charucrer is the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of such
character sequencesxx It is represented in the text and examples by a period. but may be changed
by the setlocale function.

Forward references: character handling (7 3). the setlocale function (7.4.1. I).

7.1.2 Standard headers
Each library function is declared in a hmder.” whose contents are made available by the

#include preprocessing directive. The header declares a set of related functions, plus any
necessary types and additional macros needed to facilitate their use.

The standard headers are

<assert.h> <locale.h> <stddef.h>
<ctype.h> <math.h> <stdio.h>
<ermo.h> <setjmp.h> <stdlib.h>
<float.h> <signal. h> <string. h>
<limits .h> <stdarg . h> <time. h>

If a file with the same name as one of the above < and > delimited sequences. not provided
as part of the implementation. is placed in any of the standard places for a source file to be
included. the behavior is undefined.

Headers may be included in any order. each may be included more than once in a given
scope. with no effect different from being included only once. except that the effect of including
<assert. h> depends on the definition of NDEBUG. If used, a header shall be included outside
of any external declaration or definition. and it shall first be included before the first reference to
any of the functions or objects it declares. or to any of the types or macros it defines. However.
if the identitier is declared or defined in more than one header. the second and subsequent
associated headers may be included after the initial reference to the identifier. The program shall
not have any macros with names lexically identical to keywords currently defined prior to the
inclusion.

Forward references: diagnostics (7.2)

XX The funcuons that make use of the decimal-pomt character are localeconv. fptintf, fscanf.
printf.scanf.sprintf.sscanf. rfprintf vprintf.vsprintf.atof. and strtod

XY A header is not necessarily a source ti.:. nor are the < and > delimited sequences in header names
necessarily valid source tile names

96 Library

ISO/IEC 9899 1990 (E)

7.1.3 Reserved identifiers
Each header declares or defines all identifiers listed in its associated subclause. and optionall!

declares or defines identifiers listed in its associated future library directions subclause and
identifiers which are always reserved either for any use or for use as file scope identifiers

- All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

- All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary identifier and tag name spaces.

- Each macro name listed in any of the following subclauses (including the future. library
directions) is reserved for any use if any of its associated headers is included

- All identifiers with external l inkage in any of the following subclauses (including the future
library directions) are always reserved for use as identifiers with external linkage.”

- Each identifier with tile scope listed in any of the following subclauses (including the future
library directions) is reserved for use as an identifier with file scope in the same name space if
any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier with the
same name as an identifier reserved in that context (other than as allowed by 7.1.7), the behavior
is undefined.”

7.1.4 Errors <ermo. h>
The header <ermo. h> defines several macros, all relating to the reporting of error

conditions.

The macros are

EDOM

ERANGE

which expand to integral constant expressions with distinct nonzero values, suitable for use in
#if preprocessing directives: and

errno

which expands to a modifiable Ivalue” that has type int, the value of which is set to a positive
error number by several library functions. It is unspecified whether errno is a macro or an
identifier declared with external linkage. If a macro definition is suppressed in order to access an
actual object. or a program defines an identifier with the name errno, the behavior is undefined.

The value of errno is zero at program startup. but is never set to zero by any library
function.” The value of errno may be set to nonzero by a library function call whether or not
there is an error. provided the use ot errno is not documented in the description of the function
in this International Standard.

90 The list of reserved identifiers with external l inkage includes ermo. set jmp, and va-end
91 Since macro name5 are replaced whenever lound, independent of scope and name space. macro names

matching any of the reserved identiticr names must not be defined if an associated header, if any. is
included

92 The macro errno need noi he Ihe idenIitier of an object II might expand IO a moditiable lvalue
resulting tram a functton call (for example. *errno ())

Y3 Thub. a program that uses errno lor error checking should set iI to zero before a library funcIic!l call.
then inspecI it belore a subsequent library function call Of course, a library function can save the value
ol errno on entry and then set it IO zero. as long as the original value is.resIored if errno's value is
still zero JUSI before the return .

Library 97

ISO/IEC 9899:1990 (E)

Additional macro definitions. beginning with E and a digit or E and an uppercase letter.“.’ may
also be specified by the implementation

7.1.5 Limits <float. h> and <limits.h>
The headers <float. h> and <limits. h> define several macros that expand to various

limits and parameters.

The macros. their meanings, and the constraints (or restrictions) on their values are listed in
5.2 4.2.

7.1.6 Common definitions cstddef . h>
The following types and macros are defined in the standard header xstddef . h> Some are

also defined in other headers. as noted in their respective subclauses.

The types are

ptrdiff-t

which is the signed integral type of the result of subtracting two pointers:

size t

which is the unsigned integral type of the result of the sizeof operator. and

wchar_t

which is an integral type whose range of values can represent distinct codes for all members of
the largest extended character set specified among the supported locales: the null character shall
have the code value zero and each member of the basic character set defined in 52.1 shall have a
code value equal to its value when used as the lone character in an integer character constant.

The macros are

NULL

which expands to an implementation-defined null pointer constant: and

offsetof(rype, member-desigfrotoi)

which expands to an integral constant expression that has type sizet. the value of which is the
offset in bytes. to the structure member (designated by nlrnlhe,.-desi,~nator’). from the beginning
of its structure (designated by rvpe). The nrrnrhc~ -tlcviG~~ruro~ shall be such that given

static ppe t;

then the expression 6 (t .memhe~-d~si,~,lclr~~~) evaluates to an address constant. (If the specified
member is a bit-field. the behavior is undetined.)

Forward references: localization (7 4)

w See “future library directions” (7.13 1)

98 Library

ISO/IEC 9899 I990 (E)

7.1.7 Use of library functions
Each of the following statements applies unless explicitly stated otherwise in the detailed

descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function. or a pointer outside the address space of the program. or a
null pointer), the behavior is undefined. If a function argument is described as being an arm!.
the pointer actually passed to the function shall have a value such that all address computations
and accesses to objects (that would be valid if the pointer did point to the first element of such an
array) are in fact valid Any function declared in a header may be additionally implemented as a
macro defined in the header. so a library function should not be declared explicitly if its header is
included Any macro definition of a function can be suppressed locally by enclosing the name: of
the function in parentheses. because the name is then not followed by the left. parenthesis that
indicates expansion of a macro function name. For the same syntactic reason. it is permitted to
take the address of a library function even if it is also defined as a macro.y5 The use of #undef
to remove any macro definition will also ensure that an actual function is referred to Any
invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary. so
it is generally safe to use arbitrary expressions as arguments. Likewise. those function-like
macros described in the following subclauses may be invoked in an expression anywhere a
function with a compatible return type could be caIled.96 All object-like macros listed as
expanding to integral constant expressions shall additionally be suitable for use in #if
preprocessing directives.

Provided that a library function can. be declared without reference to any type defined in a
header. it is also permissible to declare the function, either explicitly or implicitly, and use it
without including its associated header. If a function that accepts a variable number of arguments
is not declared (explicitly or by including its associated header), the behavior is undefined.

Example

The function atoi may be used in any of several ways:

- by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
/*...*/
i = atoi(str);

Y4 This means that an implementation mus1 provide an actual function for each library function. even il it
3150 provide5 9 macro for that tuncIion

Yh Because external idenIi(ier\ and some macro names beginning with an underscore are reserved.
implemen1aIion~ ma> provide special \emanIica for such names For example. rhe identitier

BUILTIN abs could be used IO indicaIe generation of in-line code for the abs function Thus. the
ippropriate ?ieader could hpecity

#define abs(x) -BUILTIN-abs(x)
for a compiler whose code generator u ill accepr it

In Ihis manner a user desiring IO guaranree Ihut B given library function such as abs will be a genuine
function may write

lundef abs
whether Ihe ImplemenIaIion 5 header provides a macro implememation of abs or B built-in
implementation The proIoIype tor the function. which precedes and is hidden by any macro detinition.
is thereby revealed also

Library 99

I!jo/IEC 9899: 1990 (E)

- by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/*...*/
i = atoi(str);

or
#include <stdlih.h>
const char *str;
/*...*/
i = (atoi) (str);

- by explicit declaration

extern int atoi(const char *);
const char *str;
/*...*/
i = atoi(str);

- by implicit declaration

const char *str;
/*...*/
i = atoi(str);

loo Library

ISO/IEC 9899 1990 (E)

7.2 Diagnostics <assert . h>

The header <assert. h> defines the assert macro and refers to another macro.

NDEBUG

which is nor defined by <assert. h>. If NDEBUG is defined as a macro name at the point in
the source file where <assert. h> is included. the assert macro is defined simply as

#define assert(ignore) ((voidjO)

The assert macro shall be implemented as a macro. not as an actual function. If the macro
definition is suppressed in order to access an actual function. the behavior is undefined

7.2.1 Program diagnostics
7.2.1.1 The assert macro

Synopsis

#include <assert.h>
void assert (int expression) ;

Description

The assert macro puts diagnostics into programs. When it is executed, if expression is
false (that is, compares equal to 0), the assert macro writes information about the particular
call that failed (including the text of the argument, the name of the source file. and the source
line number - the latter are respectively the values of the preprocessing macros FILE and --

LINE) on the standard error file in an implementation-defined format.97 Tt-then calls the
abort fEZion.

Returns

The assert macro returns no value.

Forward references: the abort function (7.10.4.1).

97 The message written might be of the form

Assertion tailed c’tprcvtro~r. tile \\‘I. line nnu

Library IO1

ISO/IEC 9899: 1990 (E)

7.3 Character handling <ctype . h>

The header <ctype. h> declares several functions useful for testing and mapping
characters.98 In all cases the argument is an int. the value of which shall be representable as an
unsigned char or shall equal the value of the macro EOF. If the argument has any other
value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that have
implementation-defined aspects only when not in the “C” locale are noted below.

The term pr-inting charucrer refers to a member of an implementation-defined set ot
characters. each of which occupies one printins position on a display device: the term c~if~l
tha~~ct~ refers to a member of an implementation-defined set of characters that are not printing
characters.”

Forward references: EOF (7.9.1). localization (7 3).

7.3.1 Character testing functions
The functions in this subclause return nonzero (true) if and only if the value of the argument

c conforms to that in the description of the function.

7.3.1.1 The isalnum function

Synopsis

#include <ctype.h>
int isalnum(int c);

Description

The isalnum function tests for any character for which isalpha or isdigit is true.

7.3.1.2 The isalpha function
Synopsis

#include <ctype.h>
int isalpha(int c);

Description

The isalpha function tests for any character for which isupper or islower is true. or
any character that is one of an implementation-defined set of characters for which none of
iscntrl. isdigit, ispunct. or isspace is true. In the "C" locale. isalpha returns
true only for the characters for which isupper or islower is true.

7.3.1.3 The iscntrl function

Synopsis

#include <ctype.h>
int iscntrl (int c) ;

9X See “tulure library directions” (7 13 2)
vv In an implementation thtlr uses the seven-bit ASCII character bet. the printing characters are those whose

value% lie from 0x20 (space) through Ox7E clilde): the control characters are those whose values lie from
0 (NUL) through OxlF (US). and the character Ox7F (DEL)

102 Library

ISO/IEC 9899 1990 (E,

Description

The iscntrl function tests for any control character.

7.3.1.4 The isdigit function

Synopsis

#include <ctype.h>
int isdigit(int c);

Description

The isdigit function tests for any decimal-digit character (as defined in 5 3. I)

7.3.1.5 The isgraph function

Synopsis

#include <ctype.h>
int isgraph(int c);

Description

The isgraph function tests for any printing character except space (’ ’)

7.3.1.6 The islower function

Synopsis

#include <ctype.h>
int islower(int c);

Description

The islower function tests for any character that is a lowercase letter or is one of an
implementation-defined set of characters for which none of iscntrl, isdigit, ispunct, or
isspace is true. In the "C" locale. islower returns true only for the characters defined as
lowercase letters (as defined in 52.1)

7.3.1.7 The isprint function

Synopsis

#include <ctype.h>
int isprint(int c);

Description

The isprint tunction test5 tar any printing character including space (’ ’)

7.3.1.8 The ispunct function

Synopsis

#include <ctype.h>
int ispunct(int c);

Description

The ispunct tunction te\t\ lor an) printing character that is neither space (’ ’) nor a
character tor which isalnum i\ true

Library 103

ISO/IEC 9899:1990 (E)

7.3.1.9 The isspace function

Synopsis

#include <ctype.h>
int isspace(int c);

Description

The isspace function tests for any character that is a standard white-space character or is
one of an implementation-defined set of characters for which isalnum is false. The standard
white-space characters are the following: space (’ ’), form feed (’ \f'). new-line (’ \n’).
carriage return (’ \r’). horizontal tab (’ \t’). and vertical tab (’ \v’). In the “C” locale.
isspace returns true only for the standard white-space characters.

7.3.1.10 The isupper function

Synopsis

#include <ctype.h>
int isupper(int c);

Description

The isuppet function tests for any character that is an uppercase letter or is one of an
implementation-defined set of characters for which none of iscntrl. isdigit. ispunct, or
isspace is true. In the “C” locale. isupper returns true only for the characters defined as
uppercase letters (as defined in 5.2.1).

7.3.1.11 The isxdigit function
Synopsis

#include <ctype . h>
int isxdigit(int c);

Description

The isxdigit function tests for any hexadecimal-digit character (as defined in 6.1.3.2).

7.3.2 Character case mapping functions
7.3.2.1 The tolower function

Synopsis

#include <ctype.h>
int tolower(int c);

Description

The tolower function converts an uppercase letter to the corresponding lowercase letter.

Returns

If the argument is a character for which isupper is true and there is a corresponding
character for which islower is true, the tolower function returns the corresponding character;
otherwise. the argument is returned unchanged

7.3.2.2 The toupper function

Synopsis

#include <ctype.h>
int toupper(int c);

104 Library

ISO/IEC 9899: 1990 (E)

Description

The toupper functiov converts a lowercase letter to the corresponding uppercase letter.

Returns

If the argument is a character for which islower is true and there is a corresponding
character for which isupper is true, the toupper function returns the corresponding character:
otherwise. the argumqnt is returned unchanged.

Li bray 105

ISOflEC 9899: 1990 (E)

7.4 Localization <locale. h>
The header <locale. h> declares two functions. one type. and defines several macros.

The type is

struct lconv

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges is explained in 7.42. I. In the “C” locale. the members shall have the values specitied in
the comments.

char *deciraalgoint;
char *thousands sep;
char *grouping;
char *int-cum-symbol;
char *currency-symbol;
char *mon_decimalgoint;
char *man-thousands-sep;
char *man grouping;
char *positive-sign;
char *negative-sign;
char intfrac-digits;
char frac-digits;
char p-csgrecedes;
char p-sep-by-space;
char n-csgrecedes;
char n-sepiby-space;
char p-signgosn;
char n-signgosn;

/* 1’. If */ -

/* I”’ */
/* ‘11’ */

/* ‘I” */
/* “” */
/* “” */
/* “‘I */
/* ‘I” */
/* flf* */

/* “” l /
/* CHAR~M?ix */
/* caAR~Mlix */
/* Cl iAR~MAx */
/* cEuIR_MAx */
/* cHAR_MAx */
/* CHAR~MAX */
/* CaAR~MAx */
/* caAR~MAx */

The macros defined are NULL (described in 7.1.6); and

LC-ALL
LC COLLATE
LCCTYPE
LC-MONETARY
Lc-NUMERIC
LC-TIME

which expand to integral constant expressions with distinct values. suitable for use as the first
argument to the setlocale function Additional macro detinitions. beginning with the
characters LC, and an uppercase letter.““’ tt~dy ;LISO be specitied by the implementation.

100 See “future library directions” (7 13 3)

106 Library

ISO/IEC 9899.1990 (E)

7.4.1 Locale control
7.4.1.1 The setlocale function

Synopsis

#include <locale.h>
char *setlocale (int category, const char *locale) ;

Description

The setlocale function selects the appropriate portion of the program’s locale as specified
by rhe category and locale arguments. The setlocale function may be used to ch.qe
or query the program’s entire current locale or portions thereof The value LC-ALL for
category names the program’s entire locale: the other values for category name onI> a
ponion of the program’s locale. LC-COLLATE affects the behavior of the strcoll and
strxfrm functions LC-CTYPE affects the behavior of the character handling functions”” and
the multibyte functions. LC-MOWTARY affects the monetary formatting information returned b!
the localeconv function LC NUMERIC affects the decimal-point character for the formatted
input/output functions and the s&g conversion functions. as well as the nonmonetary formatting
information returned by the localeconv function. LC-TIME affects the behavior of the
strftime function.

A value of “C” for locale specifies the minimal environment for C translation, a value of
11 11 for locale specifies the implementation-defined native environment. Other
implementation-defined strings may be passed as the second argument to setlocale.

At program startup, the equivalent of

setlocale (LC-JUL, “C”) ;

is executed.

The implementation shall behave as if no library function calls the setlocale function.

Returns

If a pointer to a string is piven for locale and the selection can be honored. the
setlocale tunction return:, a pointer to the string associated with the specilied category for
the neu locale. If the selection cannot be honored, the setlocale function returns a null
pointer and the program’s locale is not changed.

A null pointer for locale cause5 the setlocale function to return a pointer to the string
associated with the category for the program’s current locale; the program’s locale is not
changed III’

The pointer to \trln.g returned h> the setlocale function is such rhat a subseqoent call with
that string value and irs associnred category will restore that part of the program’s locale The
string pointed IO shall not be moditied by the program. but may be overwritten by a subsequent
call IO the setlocale function

Forward references: formatted input/output functions (7 9.6). the multibyte character functions
(7 10.7). the multit+Ic string tuncrions (7.103). string conversion functions (7.10 I)., rhe
strcoll functwn (7 I I 13) rhe strftime function (7 123.5). the strxfrm tunction
(7 II -1.5)

101 The on\> luncilon~ m 7 3 uhow hehawor i\ no1 affected by the current locale are isdig; t and
isxdiglt

102 The tmplcmemat1on muht arrange IO encode in a strme the various categories due IO a heterogeneous
locale *hen category ha\ the value LC-ALL .

Librarv 107

ISO/-lEC 9899:1990(E)

7.4.2 Numeric formatting convention inquiry
7.4.2.1 The localeconv function
Synopsis

#include <locale.h>
struct lconv *localeconv (void) ;

Description

The localeconv function sets the components of an object with type struct lconv with
values appropriate for the formatting of numerii: quantities (monetary and otherwise) according to
the rules of the current locale.

The members of the structure with’ type char * are pointers to strings. any of which (except
decimalgoint) can point to I”‘, to indicate that the value is not available in the current
locale or is of zero length The members with type char are nonnegative numbers. any of
which can be CHAR M A X fo indicate thar the value is not available in the current locale. The
members include the following:

char l deci.malgoint
The decimal-point character used to format nonmonetary quantities.

char *thousands-sep
The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

char *grouping
A string whose elements indicate the size of each group of digits in formatted
nonmonetary quantities.

char *int curr-symbol
The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in IS0 4217.1987 The fourth character (immediately preceding the
null character) is the character used to separate the international currency symbol
from the monetary quantity.

char *currency-symbol
The local currency symbol applicable lo the current locale.

char *mon_decimalgoint
The decimal-point used lo format monetary quantities.

char *mon_thousands sep
The separator for groups of digit5 before the decimal-point in formatted monetary
quantities

char *man-grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities

char *positiveFsign
The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign
The strmg used to indicate a negative-valued formatted m lnetary quantity.

char int frac digits
-The number of fractional digits (those after the decimal-point) to be displayed in a

internationally formatted monetary quantity

108 Library

ISO/IEC 9899.1990 (E)

char frac-digits
The number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

char p-csgrecedes
Set to 1 or 0 if the currency-symbol respectively precedes or succeeds the
value for a nonnegative formatted monetary quantity

char p-sep-by-space
Set to 1 or 0 if the currency-symbol respectively is or is not separated by a
spate from the value for a nonnegative formatted monetary quantity

char n-csgrecedes
Set to I or 0 if ihe currency-symbol respectively precedes or succeeds the
value for a negative formatted monetary quantit)

char n-sep-by-space
Set to I or 0 if the currency-symbol respectively is or is not separated by a
space from the value for a negative formatted monetary quantity.

char p-signgosn
Set to a value indicating the positioning of the positive-sign for a nonnegative
formatted monetary quantity.

char n-signgosn
Set to a value indicating the positioning of the negative-sign for a negative
formatted monetary quantity.

The elements of grouping and man-grouping are interpreted according to the following:

CHAR_MAx No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits before
the current group.

The value of p-signgosn and n-signgosn is interpreted according to the following:

0 Parentheses surround the quantity and currency-symbol.

1 The sign string precedes the quantity and currency-symbol.

2 The sign string succeeds the quantity and currency-symbol.

3 The sign string immediately precedes the currency-symbol.

4 The sign string immediately succeeds the currency-symbol

The implementation shall behave as if no library function calls the localeconv function.

Returns

The localeconv function returns a pointer to the filled-in object. The structure pointed to
by the return value shall not be moditied by the program. but may be overwritten by a subsequent
call to the localeconv tunction In addition. calls to the setlocale function with
categories LC-ALL. LC-MONETARY. or LC-NUMERIC may overwrite the contents of the
structure.

Example

The following table illustrates the rules which may well be used by four countries to format
monetary quantities

Library 109

ISO/IEC 9899: 1990 (E)

County Positive format Negative format International format

Italy L.1.234 ~L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56
Norway krl .234,56 kr1.234,56- NOK l-234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CEF 1,234.56

For these four countries. the respective values for the monetary members of the structure
returned by localeconv are:

int-curr-symbol
currency-symbol
man-decimalgoint
man-thousands-sep
man-grouping
positive-sign
negative-sign
int-frac-digits
frac-digits
p-csgrecedes
p-sep_by-space
n-csgrecedes
n-sep-by-space
p-signgosn
n-signgosn

Netherlands Norway Switzerland

“CHF ”
"SFrs."
II 11
II I "
“\3”
11 I,

“C”
2
2
1
0
1
0
1
2

I IO Library

ISO/IEC 9899: 1990 (E)

7.5 Mathematics <math. h>
The header uMth. h> declares several mathematical functions and detines one macro The

functions take double arguments and return double values.‘o7 Integer arithmetic functions
and conversion functions are discussed later

The macro defined is

HUGE-W&

which expands to a positive double expression. not necessarily representable as a float ‘W

Forward references: integer arithmetic functions (7.10 6). the atof function (7.10 1.1). the
strtod function (7.10 I 4)

7.5.1 Treatment of error conditions
The behavior of each of these functions is defined for all representable values of its input

arguments. Each function shall execute as if it were a single operation, without generating any
externally visible exceptions.

For all functions. a &mairr CMW occurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any required
domain errors. an implementation may define additional domain errors, provided that such errors
are consistent with the mathematical definition of the function lo5 On a domain error. the
function returns an implementation-defined value; the value of the macro EDOM is stored in
errno.

Similarly, a rzrrge error occurs if the result of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the macro
HUGE~VAL, with the same sign (except for the tan function) as the correct value of the
function; the value of the macro ERANGE is stored in errno. If the result underflows (the
magnitude of the result is so small that it cannot be represented in an object of the specified
type). the function returns zero: whether the integer expression errno acquires the value of the
macro EIUNGE is implementation-defined

7.52 Trigonometric functions
7.5.2.1 The aces function

Synopsis

#include Cmath.h>
double aces (double x) ;

Description

The aces tunction computes the principal value of the arc cosine of x. A domain error
occurs for arguments not in the range [- 1. +I 1.

IOJ See “future library directwn3” (7 IJ 11

IO-) HUGE-VAX. can be po\ttive intinity 111 an implementation that suppork infinities

105 In an implementation that httpport\ inlinttlcs. this allows intinity as an argument to be a domain error if
the mathematical domain of the function does not mclude inlinity

Library Ill

ISO/IEC 9899: 1990 (E)

Returns

The aces function returns the arc cosine in the range [0, X] radians.

7.5.2.2 The asin function

Synopsis

#include <math.h>
double asin (double x) ;

Description

Ibe asin function computes the principal value of the arc sine of x. A domain error occurs
for arguments not in the range [- 1, +I].

Returns

The asin function returns the arc sine in the range [-x/2. +?t/2] radians.

7.5.2.3 The atan function

Synopsis

#include Kmath.h>
double atan(double x);

Description

The atan function computes the principal value of the arc tangent of x.

Returns

The atan function returns the arc tangent in the range [-x/2, +x/2] radians.

7.5.2.4 The atan function

Synopsis

#include 6aath. h>
double atan (double y, double x) ;

Description

The atan function computes the principal value of the arc tangent of y/x. using the signs
of both arguments to determine the quadrant of the return value. A domain error may occur if
both arguments are zero.

Returns

The atan function returns the arc tangent of y/x. in the range I-51. +x] radians.

7.5.2.5 The cos function

Synopsis

#include <math.h>
double cos (double x) ;

Description

The cos function computes the cosine of x (measured in radians).

Returns

The cos function returns the cosine value.
.

112 Library

ISO/IEC 9899 1990 (E)

7.5.2.6 The sin function

Synopsis

#include <math.h>
double sin(double x);

Description

The sin function computes the sine of x (measured in radians).

Returns

The sin function returns the sine value.

7.5.2.7 The tan function

Synopsis

#include <math.h>
double tan(double x);

Description

The tan function returns the tangent of x (measured in radians).

Returns

The tan function returns the tangent value.

7.5.3 Hyperbolic functions
7.5.3.1 The cash function
Synopsis

#include ath.h>
double cosh(double x);

Description

The cash function computes the hyperbolic cosine of x. A range error occurs if the
magnitude of x is too large.

Returns

The cash function returns the hyperbolic cosine value.

7.5.3.2 The sinh function

Synopsis

#include (math.h>
double sinh(double x) ;

Description

The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
of x is too large.

Returns

The sinh function returns the hyperbolic sine value.

.

Library II3

ISO/IEC 9899: 1990 (E)

7.5.3.3 The tanh function

Synopsis

#include Uaath.h>
double tanh(double x);

Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

7.5.4 Exponential and logarithmic functions
7.5.4.1 The exp function
Synopsis

#include <math.h>
double exp(double x);

Description

The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.

Returns

The exp function returns the exponential value.

7.5.4.2 The frexp function
Synopsis

#include <math.h>
double frexp(double value, int *exp);

Description

The frexp function breaks a floating-point number into a normalized fraction and an integral
power of 2. It stores the integer in the int object pointed to by exp.

Returns

The frexp function returns the value x. such that x is a double with magnitude in the
interval 1 I/?. I) or zero. and value equals x times 2 raised to the power *exp If value is

zero. both parts of the result are zero

7.5.4.3 The ldexp function

Synopsis

#include (math.h>
double ldexp(double x, int exp);

Description

The ldexp function multiplies a tloating-point number by an integral power of 2. A range
error may occur.

Returns

The ldexp function returns the value of x times 2 raised to the power exp. .

I14 Library

ISO/IEC 9899 1990 cE)

7.5.4.4 The log function

Synopsis

#include ath.h>
double log(double x);

Description

The log function compute5 the natural logarithm of x. A domain error occurs if the
argument is negative A range error ma) occur if the argument is zero

Returns

The log function returns the natural logarithm.

7.5.4.5 The log10 function

Synopsis

#include UMth.h>
double loglO(double x);

Description

The log10 function computes the base-ten logarithm of x. A domain error occurs if the
argument is negative. A range error may occur if the argument is zero.

Returns

The log10 function returns the base-ten logarithm.

7.5.4.6 The modf function

Synopsis

#include <math-h>
double modf(double value, double *iptr);

Description

The modf function breaks the argument value into integral and fractional parts, each of
which has the same sign as the argument It stores the integral part as a double in the object
pointed IO by iptr.

Returns

The modf function returns the signed fractional part of value

7.5.5 Power functions

7.5.5.1 The pow function

Synopsis

#include UMth.h>
double pow(double x, double y);

Description

The pow function computes x raised IO the power y A domain error occurs if x is negative
and y is not an integral value A domam error occurs if the result cannot be represented when x
is 7ero and y is less than or equal IO /era A range error may occur

Returns

The pow tunction returns the value of x raised to the power y.

Libr+ 115

ISO/IEC 9899: 1990 (E)

7.5.5.2 The sqrt function

Synopsis

#include <math.h>
double sqrt (double x) ;

Description

The sqrt function computes the nonnegative square root of x. A domain error occurs if the
argument is negative.

Returns

The sqrt function returns the value of the square root.

7.5.6 Nearest integer, absolute value, and remainder functions
7.5.6.1 The ceil function

Synopsis

#include <math.h>
double ceil (double x) ;

Description

The ceil function computes the smallest integral value not less than x.

Returns

The ceil function returns the smallest integral value not less than x, expressed as a double.

7.5.6.2 The fabs function
Synopsis

#include ath.h>
double fabs(double x);

Description

The fabs function computes the absolute value of a floating-point number x.

Returns

The fabs function returns the absolute value of x.

756.3 The floor function

Synopsis

#include UMth.h>
double floor(double x);

Description

The floor function computes the largeht integral value not greater than x.

Returns

The floor function returns the largest mtegral value not greater than x. expressed as a
double

.

II6 Li braty

ISO/lEC 9899: 1990 (E)

7.5.6.4 The fmod function

Synopsis

#include ath.h>
double fmod(double x, double y);

Description

The fmod function computes the floating-point remainder of x/y.

Returns

The fmod function returns the value x - i !: y, for some integer i such that. if y is nonzero.
the result has the same sign as x and magnitude less than the magnitude of y. If y is zero.
whether a domain error occuri or the fmod function returns zero is implementation-defined

Library

ISO/IEC 9899: 1990 (El

7.6 Nonlocal jumps <set jmp. h>

The header <set jmp. h> defines the macro set jrnp. and declares one function and one
type, for bypassing the normal function call and return discipline.“’

The type declared is

jq-buf

which is an array type suitable for holding the information needed to restore a calling
environment.

It is unspecified whether setjmp is a macro or an identifier declared with external linkage.
If a macro definition is suppressed in order to access an actual function. or a propram detines an
external identifier with the name set jxtp. the behavior is undetined.

7.6.1 Save calling environment
7.6.1.1 The set jmp macro

Synopsis

#include <setjmp.h>
int set jmp (jrnp-buf env) ;

Description

The set jrap macro saves its calling environment in its jmp_buf argument for later use by
the long jrap function.

Returns

If the return is from a direct invocation. the set jmp macro returns the value zero. If the
return is from a call to the longjmp function, the set jxtp macro returns a nonzero value.

Environmental constraint

An invocation of the set jntp macro shall appear only in one of the following contexts:

- the entire controlling expression of a selection or iteration statement:

- one operand of a relational or equality operator with the other operand an integral constant
expression. with the resulting expression beinp the entire controlling expression of a selection
or iteration statement:

- the operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement. or

- the entire expression of an expression statement (possibly cast to void).

IM These functions are useful for dealing with mumal conditions encountered in a low-level funclion of a
program .

II8 Library

ISO/IEC 9899 I990 (E)

7.6.2 Restore calling environment
7.6.2.1 The longjmp function
Synopsis

#include <setjmp.h>
void longjmp (jmp-buf env, int val) ;

Description

The longjmp function restores the environment saved by the mosf recent invocation of the
setjntp macro in the same invocation of the program. with the coriesponding jmp:buf
argument. If there has been no such invocation. or if the function containing the invbcatlon of
the set jntp macro has terminated execution “” in the interim. the behavior is undefined.

All accessible objects have values as of the rime longjmp was called. except that the values
of objects of automatic storage duration that are local to the function containing the invocation of
the corresponding set jmp macro that do not have volatile-qualified type and have been changed
between the set jmp invocation and long jxnp call are indeterminate.

As it bypasses the usual function call and return mechanisms, the longjmp function shall
execute correctly in contexts of interrupts. signals and any of their associated functions.
However. if the longjmp function is invoked from a nested signal handler (that is. from a
function invoked as a result of a signal raised during the handling of another signal), the behavior
is undefined.

Returns

After long jmp is completed. program execution continues as if the corresponding invocation
of the set jmp macro had just returned the value specified by val. The longjmp function
cannot cause the setjmp macro to return the value 0, if val is 0, the setjmp macro returns
the value 1.

1117 For ciamplc h! CWLUII~~ a return statement or because another longjmp call has caused a tran\lcr
10 ti set jmp ~n~ocat~or~ in 3 luncrlon earlier in the set 01 nested calls

Li brliry 119

ISO/IEC 9899: 1990 (E)

7.7 Signal handling <signal. h>

The header <signal. h> declares a type and two functions and defines several macros. for
handling various signals (conditions that may be reported during program execution).

The type defined is

sig-atomic-t

which is the integral type of an object that can be accessed as an atomic entity. even in the
presence of asynchronous interrupts.

The macros defined are

S IG-DFL
SIG-ERR
SIG-IGN

which expand to constant expressions with distinct values that have type compatible with the
second argument to and the return value of the signal function, and whose value compares
unequal to the address of any declarabie function: and the following. each of which expands to a
positive integral constant expression that is the signal number corresponding to the specified
condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGPPE an erroneous arithmetic operation, such as zero divide or an operation resulting in
overtlow

SIGILL detection of an invalid function image, such as an illegal instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls
to the raise function. Additional signals and pointers to undeclarable functions. with macro
definitions beginning. respectively, with the letters SIG and an uppercase letter or with SIG- and
an uppercase letter.‘ux may also be specified by the implementation. The complete set of signals,
their semantics, and their default handling is implementation-defined: all signal numbers shall be
positive.

7.7.1 Specify signal handling
7.7.1.1 The signal function
Synopsis

#include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description

The signal function chooses one of three uays in which receipt of the signal number sig
is to be subsequently handled. If the value of func is SIG-DFL. default handling for that
signal will occur If the value of func is SIG-IGN. the signal will be ignored. Otherwise.

IOX See “future library directions” (7 13 5) The name, 01 the signal numbers reflect the f llowing terms
(respectively): abort. floating-point exception. illcgal instruction. interrupt. segmentation violation. and
terminauon

120 Library

ISO/IEC 9899:1990 (E)

func shall point to a function to be called when that signal occurs. Such a function is called a
signal handler-.

When a signal occurs, if func points to a function. first the equivalent of signal (sig,
SIG-DPL); is executed or an implementation-defined blocking of the signal is performed (If
the value of sig is SIGILL, whether the reset to SIG-DFL occurs is implementation-defined.)
Next the equivalent of (*func) (sig) ; is executed. The function func may terminate by
executing a return statement or by calling the abort. exit. or longjrnp function If func
executes a return statement and the value of sig was SIGFPE or any other implementation-
defined value corresponding to a computational exception. the behavior is undefined Otherwise.
the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling the +bort or raise function. the
behavior is undefined if the signal handler calls any function in the standard library other than the
signal function itself (with a first argument of the signal number corresponding to the signal
that caused the invocation of the handler) or refers to any object with static storage duration other
than by assigning a value to a static storage duration variable of type volatile
sig-atomic-t Furthermore, if such a call to the signal function results in a SIG-ERR
return. the value of errno is indetetminate.‘us!

At program startup. the equivalent of

signal (sig, SIG-IGN) ;

may be executed for some signals selected in an implementation-defined manner; the equivalent
of

signal(sig, SIG-DFL);

is executed for all other signals defined by the implementation.

The implementation shall behave as if no library function calls the signal function.

Returns

If the request can be honored, the signal function returns the value of func for the most
recent call to signal for the specified signal sig. Otherwise, a value of SIG ERR is returned
and a positive value is stored in errno.

Forward references: the abort function (7.10.4.1). the exit function (7.10.4.3).

7.7.2 Send signal
7.7.2.1 The raise function

Synopsis

#include <signal.h>
int raise (int sig) ;

Description

The raise function sends the signal sig to the executing program.

Returns

The raise function return\ zero if successful. nonzero if unsuccessful

lo) It any signal 1s generated by an asynchronous signal handier. the behavior is undetined

Library 121

ISO/iEC 9899: 1990 (E)

7.8 Variable arguments <stdarg . h>
The header <stdarg. h> declares a type and defines three macros. for advancing through a

list of arguments whose number and types are not known to the called function when it is
translated.

A function may be called with a variable number of arguments of varying types. As
described in 6 7.1. its parameter list contains one or more parameters. The rightmost parameter
plays a special role in the access mechanism. and will be designated par7~V in this description

The type declared is

va-list

which is a type suitable for holding information needed by the macros va-start. va-arg. and
va-end. If access to the varying arguments is desired, the called function shall declare an
object (referred to as ap in this subclause) having type va-list. The object ap may be passed
as an argument to another function; if that function invokes the va-arg macro with parameter
ap. the value of ap in the calling function is indeterminate and shall be passed to the va-end
macro prior to any further reference to ap.

7.8.1 Variable argument list access macros
The va-start and va-arg macros described in this subclause shall be implemented as

macros. not as actual functions. It is unspecified whether va-end is a macro or an identitier
declared with external linkage. If a macro definition is suppressed in order to access an actual
function. or a program defines an external identifier with the name va-end. the behavior is
undefined. The va-start and va-end macros shall be invoked in the function accepting a
varying number of arguments, if access to the varying arguments is desired.

7.8.1.1 The va-start macro

Synopsis

#include <stdarg.h>
void va-start (va-list ap, po~mN);

Description

The va-start macro shall be invoked before any access to the unnamed arguments.

The va start macro initializes ap for subsequent uhe by va-arg and va-end. -
The parameter pa~n?N is the identifier of the riphtmost parameter in the variable parameter list

in the function definition (the one just betore the , . . . 1. if the parameter par-ntN is declared
~iith the register storage class. with a function or array type. or with a type that is not
compatible with the type that results atter application ot the default argument promotions. the
behavior i\ undetined

Returns

The va start macro returns no value

7.8.1.2 The va-arg macro

Synopsis

#include <stdarg.h>
r!pf’ va-arg (va-list ap, f~/w) ;

Description

The va arg macro expands to an exprehhion that has the type and value of the next
arpument in-the call The parameter ap shall be the same as the va-list ap initialized by
va-start Each invocation of va arg modifieh ap so that the values of successive arguments

122 Library

ISO/IEC 9899 1990 (E)

are returned in turn The parameter I?‘I)E is a type name specified such thgt the type of a pointer
to an object that has the specilied type can be obtained simply by postfixing a l to r~pc If there
is no actual next argument. or if rype is not compatible with the type of the actual next argument
(as promoted according to the default argument promotions), the behavior is undetined.

Returns

The first invocation of the va arg macro after that of the va-start macro returns the
value of the argument after that specified by par-NV. Successive invocation5 return the values of
the remaining arguments in succession.

7.8.1.3 The va-end macro

Synopsis

#include <stdarg.h>
void va-end (va-list ap) ;

Description

The va-end macro facilitates a normal return from the function whose variable argument list
was referred to by the expansion of va-start that initialized the va list ap The va-end
macro may modify ap so that it is no longer usable (without an intervening invocation of
va-start). If there is no corresponding invocation of the va-start macro. or if the
va-end macro is not invoked before the return. the behavior is undefined.

Returns

The va-end macro returns no value.

Example

The function fl gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function f2. The
number of pointers is specified by the first argument to fl.

#include <stdarg.h>
#define MAXARGS 31

void fl(int ngtrs, . ..)
t

va-list ap;
char *array[MAXARGS];
int ptr-no = 0;

if (ngtrs > MAXARGS)
ngtrs = MAlCAFtGS;

vaftart (ap, ngtrs);
while (ptr-no < ngtrs)

array[ptr-no++] = va-arg(ap, char *);
va-end(ap);
f2(ngtrs, array);

Each call to fl shall have visible the detinition of the function or a declaration such as

void fl(int, . ..).

Library 123

ISO/IEC 9899: 1990 (E)

7.9 Input/output <stdio . h>
7.9.1 Introduction

The header <stdio. h> declares three types. several macros. and many functions for
performing inpur and output.

The types declared are size-t (described in 7.1.6);

FILE

which is an object type capable of recording all the information needed to control a stream.
including its file position indicator, g pointer to its associated buffer (if any). an EIWW indicator
that records whether a read/write error has occurred. and an end-of-file indicaror that records
whether the end of the file has been reached. and

fp0s-t

which is an object type capable of recording all the information needed to specify uniquely every
position within a file.

The macros are NULL (described in 7.1.6);

-1OFBF
-1OLBF
-1ONBF

which expand to integral constant expressions with distinct values, suitable for use as the third
argument to the setvbuf function;

BUFSIZ

which expands to an integral constant expression, which is the size of the buffer used by the
setbuf function;

which expands to a negative integral consrant expression that is returned by several functions to
indicate end-of-jile. that is, no more input from a stream:

FOPEN MAX

which expands to an integral constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

FILENAME MAX

which expands to an integral constant expression that is the size needed for an array of char
large enough lo hold the longest file name string that the implementation guarantees can be
opened: ’ “’ -

L-tmpnam

which expands to an integral constant expression that is the size needed for an array of char
large enough to hold a temporary file name string generated by rhe tmpnam function;

1 IO If the implementation imposes no practical limit on the length of file name strings, the value of
FILENAME MAX should instead be the recommended Gze of an ar ly intended to hold a file name
string Of course. file name string content5 are wbject to other system-.$ecific constraints; therefore u/l
possible strings of length FILENAME~MAX cannot be expected io be opened successfully .

124 Library

ISO/IEC 9899: 1990 (E)

SEEK-CUR
SEEK-END
SEEK-SET

which expand to integral constant expressions with distinct values, suitable for use as the third
argument to the fseek function;

which expands to an integral constant expression that is the minimum number of unique file
names that shall be generated by the tmpnam function.

stderr
&din
stdout

which are expressions of type “pointer to FILE” that point to the FILE objects hssociated.
respectively, with the standard error, input, and output streams.

Forward references: files (7.9.3), the fseek function (7.9.9.2). streams (7.9.2). the tatpnam
function (7.9.4.4).

7.9.2 Streams
Input and output, whether to or from physical devices such as terminals and tape drives, or

whether to or from files supported on structured storage devices, are mapped into logical data
srreonts, whose properties are more uniform than their various inputs and outputs. TWO forms of
mapping are supported, for text streoms’and for binary streams.” ’

A text stream is an ordered sequence of characters composed into lines, each line consisting
of zero or more characters plus a terminating new-line character. Whether the last line requires a
terminating new-line character is implementation-defined. Characters may have to be added,
altered, or deleted on input and output to conform to differing conventions for representing text in
the host environment. Thus. there need not be a one-to-one correspondence between the
characters in a stream and those in the external representation. Data read in from a text stream
will necessarily compare equal to the data that were earlier written out to that stream only if: the
data consist only of printable characters and the control characters horizontal tab and new-line; no
new-line character is immediately preceded by space characters; and the last character is a new-
line character. Whether space characters that are written out immediately before a new-line
character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record internal
data Data read in from a binary stream shall compare equal to the data that were earlier written
out to that stream. under the same implementation. Such a stream may, however. have an
implementation-defined number of null characters appended to the end of the stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character. The value of the macro BUFSIZ shall be at least
256

I I I An implementation need not distinguish between text streams and binary streams In such an
Implementa!ion. there need be no new-line characters in a text stream nor any limit IO the length of a
line

.

Library 12.5

ISO/IEC 9899: 1990 (E)

7.9.3 Files
A stream is associated with an external tile (which may be a physical device) by c>pcrri/rg a

file, which may involve tr-eating a new file. Creating an existing file causes its fomrer contents
to be discarded. if necessary. If a file can support positioning requests (such as a disk file. as
opposed to a terminal). then a file positiorr indicator ” associated with the stream is positioned at
the start (character number zero) of the file. unless the file is opened with append mode in which
case it is implementation-defined whether the file position indicator is initially positioned at the
beginning or the end of the file. The file position indicator is maintained by subsequent reads.
writes, and positioning requests, to facihtate an orderly progression through the file All input
takes place as if characters were read by successive calls to the fgetc function: all output takes
place as if characters were written by successive calls to the fputc function. .

Binary files are not truncated. except as defined in 7.9.5.3. Whether a write on a text stream
causes the associated file to be truncated beyond that point is implementation-defined

When a stream is unbuffered. characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and transmitted to or
from the host environmen! as a block. When a stream is fit//F hffered. characters are intended to
be transmitted to or from the host environment as a block when a buffer is filled. When a stream
is line hffered. characters are intended to be transmitted to or from the host environment as a
block when a new-line character is encountered. Furthermore. characters are intended to be
transmitted as a block to the host environment when a buffer is filled. when input is requested on
an unbuffered stream, or when input is requested on a line buffered stream that requires the
transmission of characters from the host environment. Support for these characteristics is
implementation-defined. and may be affected via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The value of a pointer to a FILE object is indeterminate after the
associated file is closed (including the standard text streams). Whether a file of zero length (on
which no characters have been written by an output stream) actually exists is implementation-
defined.

The file may be subsequently reopened. by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main function
returns to its original caller, or if the exit function is called. all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination.
such as calling the abort function, need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a
FILE object may not necessarily serve in place of the original.

At program startup. three text streams are predetined and need not be opened explicitly -
r~umlurd i~/~ct (for reading conventional input). rfurrdu/ L/ ouf/~tr (for writing conventional
output). and sfurhrd error (for writin p diagnostic output). When opened. the standard error
stream is not fully buffered: the standard input and standard output streams are fully buffered if
and only if the stream can be determined not IO refer to an interactive device.

Functions that open additional (nontemporary) tiles require a file nume. which is a string.
The rules for composing valid file names are implementation-defined. Whether the same file can
be simultaneously open multiple times is also implementation-defined

I I2 This IS described in the Base Document a\ 3 /i/v /~rji~ter That term is not used in this International
Sundard IO avoid confusion with a pointer IO an ohJecl Ihat ha> type FILE

116 Library

ISO/lEC 9899 1090 (E)

Environmental limits

The value of FOPEN-MAX shall be at least eight, including the three standard text streams

Forward references: the exit function (7.10.4.3). the fgetc function (7.9.7.1). the fopen
function (7.9.5.3). the fputc function (7.9.7.3). the setbuf function (7.9.5.5). the setvbuf
function (7.9.5.6).

7.9.4 Operations on files
7.9.4.1 The remove function

Synopsis

#include <stdio.h>
int remove(const char *filename);

Description

The remove function causes the file whose name is the string pointed to by filename to
be no longer accessible by that name. A subsequent attempt to open that file using that name
will fail, unless it is created anew. If the file is open. the behavior of the remove function is
implementation-defined.

Returns

The remove function returns zero if the operation succeeds, nonzero if it fails.

7.9.4.2 The rename function
Synopsis

#include <stdio.h>
int rename(const char *old, const char *new);

Description

The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed to by new. The file named old is no
longer accessible by that name It a tile named by the string pointed to by new exists prior to
the call to the rename function, the behavior is implementation-defined.

Returns

The rename function returns zero if the operation succeeds. nonzero if it fails.“’ in which
case if the tile existed previously it is still known by its original name.

7.9.4.3 The tmpfile function

Synopsis

#include <stdio.h>
FILE *t-file (void) ;

Description

The tmpfile lunction crt’atc\ ;I temporary binary file that will automatically be removed
when it. i\ closed or at program tcmlinntion If the program terminates abnormally, whether an
open temporar) tile i\ rernokrd I, implementation-defined. The file is opened for update with
” wb+ ” mode

-
I I 3 Amone the reams the implemcnrcltton may cau’re the rename function to fail are that the tile is open

or that II 14 nrLe\\ur> IO cop> II\ c’ontcnth IO eflectuale ils renaming
.

Li brar) 127

ISO/IEC 9899: 1990 (E)

Returns

The t-file function returns a pointer to the stream of the file that it created. If the file
cannot be created. the tmpfile function returris a null pointer.

Forward references: the fopen function (7.9.5.3).

7.9.4.4 The tmpnam function

Synopsis

#include <stdio.h>
char *trupnara(char *s) ;

Description

The tmpnam function generates a string that is a valid file name and that is not the same as
the name of an existing file.“4

The tmpnam function generates a different string each time it is called. up to TMP-MAX
times. if it is called more than TMp-MAx times, the behavior is implementation-defined.

The implementation shall behave as if no library function calls the ttnpnam function.

Returns

If the argument is a null pointer, the tmpnaxn function leaves its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function may modify
the same object. If the argument is not a null pointer, it is assumed to point to an array of at
least L-tmpnam chars: the tmpnam function writes its result in that array and returns the
argument as its value.

Environmental limits

The value of the macro TMP-MAX shall be at least 25.

7.9.5 File access functions

7.9.5.1 The fclose function

Synopsis

#include <stdio.h>
int fclose(FILE *stream);

Description

The fclose function causes the stream pointed to by stream to be flushed and the
associated tile to be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file. any unread buffered data are discarded. The stream is
disassociated from the file. If the associated buffer was automatically allocated. it is deallocated.

I II Files created using strings generated bq the tmpnam Iunction are temporary only in the sense that their
names should not collide with those generated h> c lnventional nammg rules for the implementation It
IS still necessary to use the remove lunction to rel obe such tiles when their use is ended. and before
program termination

I’X Library

ISO/lEC 9899 1990 (E)

Returns

The fclose function returns zero if the stream was successfully closed. or EOF if any errors
were detected.

7.9.5.2 The fflush function

Synopsis

#include <stdio.h>
int fflush(FILE *stream);

Description .’

If stream points to an output stream or an update stream in which the most recent operation
was not input. the fflush function causes any unwritten data for that stream to be delivered to
the host environment to be written to the file: otherwise, the behavior is undefined.

If stream is a null pointer. the fflush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

The fflush function returns EOF if a write error occurs, otherwise zero.

Forward references: the fopen function (7.9.5.3). the ungetc function (7.9.7.11).

7.9.5.3 The fopen function

Synopsis

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Description

The fopen function opens the file whose name is the string pointed to by filename, and
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:“5

r
w
a
rb
wb
ab
r+
w+
a+
r+b 01 rb+
w+b 01 wb+
a+b ot ab+

open text file for reading
truncate to zero length or create text file for writing
append. open or create text file for writing at end-of-file
open binary file for reading
truncate to zero length or create binary file for writing
append. open or create binary file for writing at end-of-file
open text tile for update (reading and writing)
truncate to /era length or create text tile for update
append. open or create text tile for update. writing at end-of-tile
open binar! tile tar update (reading and writing)
truncate to /era length or create binary file for update
append. open or create binary file for update, writing at end-of-file

Opening a tile uirh read mode (’ r’ a\ the first character in the mode argument) fails if the
tile does not exist or cannot he read

Opening a file u ith append mode (’ a’ as the first character in the mode argument) causes all
hubsequent write5 IO the tile IO be torced to the then current end-of-file, regardless of intervening

I I5 Additional character3 ma) lollou thebe sequences

Library 129

ISO/IEC 9899:1990 (E)

calls fo the fseek function. In some implemenrations. opening a binary file with append mode
(‘b’ as the second or third character in the above list of mode argument values) may initiallj
position the file position indicator for the stream beyond the last data written. because of null
character padding.

When a file is opened with update mode (‘+’ as the second or third character in the above
list of mode argument values), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call to the
f flush function or to a file positionin, 0 function (fseek. fsetpos. or rewind). and input
may not be directly followed by output without an intervening call to a file positioning function.
unless the input operation encounters end-of-file. Opening (or creating) a fext tile with update
mode may instead open (or create) a binary stream in some implementations.

When opened. a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

The fopen function returns a pointer to the object controlling the stream. If the open
operation fails, fopen returns a null pointer.

Forward references: file positioning functions (7.9.9).

7.9.5.4 The fteopen function

Synopsis

#include <stdio.h>
FILE *freopen(const char *filename, const char *mode,

FILE *stream);

Description

The freopen function opens the file whose name is the string pointed to by filename and
associates the stream pointed to by stream with it. The mode argument is used just as in the
fopen function ‘I6

The freopen function first attempts to close any file that is associated with the specified
stream. Failure to close the file successfully is ignored. The error and end-of-tile indicators for
the stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise.
freopen returns the value of stream

7.9.5.5 The setbuf function

Synopsis

#include <stdio.h>
void setbuf(F1I.E *stream, char *buf) ;

I16 The primary use of the freopen function ih to change the lile ahsociated with a standard text stream
(stderr. stdin. or stdout). as those idenritierh need not be modifiable lvalues to which the value
returned by the fopen function may be assigned

130 Library

ISO/IEC 9899. I990 (E)

Description

Except rhat it returns no value. the setbuf funcrion is equivalent to the setvbuf tunctmn
invoked with the values -1OFBF for mode and BUFSIZ for size. or (if buf is a null pointer).
with the value -1ONBF for mode

Returns

The setbuf function returns no value

Forward references: the setvbuf funcrlon (7.9.5.6).

7.9.5.6 The setvbuf function

Synopsis

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode, size-t size);

Description

The setvbuf function may be used only after the stream pointed to by stream has been
associated with an open file and before any other operation is performed on the stream. The
argument mode determines how stream will be buffered, as follows: IOFBF causes
input/output to be fully buffered: -1OLBF causes input/output to be line buffered; -1ONBF
causes input/output fo be unbuffered. If buf is not a null pointer, the array it points to may be
used instead of a buffer allocated by the setvbuf function.“’ The argument size specifies
the size of the array. The contents of the array at any time are indeterminate.

Returns

The setvbuf function returns zero on success, or nonzero if an invalid value is given for
mode or if the request cannot be honored.

7.9.6 Formatted input/output functions
7.9.6.1 The fprintf function

Synopsis

#include <stdio.h>
int fprintf (FILE *stresxn, const char *format, . ..).

Description

The fprintf function writes ourput to the stream pointed ro by stream. under control of
the string pointed IO h> format that specities how subsequent arguments are converted for
output if there arc’ insuflicicnt argument\ for .the format, the behavior is undefined It the
tormut I\ cxhaustcd u hilt arguments remain. the excess arguments are evaluated (as always) but
;Lrc olhcruise ignored The fprintf tunctton returns when the end of the format string is
encountered

The tot-mar \hull hc a muttib!tc character sequence. beginning and ending in its initial shift
state The format 14 ~on~po4 01 yc’ro or more directives ordinary multibyte characters (not %l.
which are copied unchanged to the output stream. and conversion specifications. each of which
results in fetchmg 7t‘ro or more subsequent arguments Each conversion specification is
introduced hy the character % Attcr the %. the following appear in sequence

I 17 The huller mu\~ ha\c 3 II!CIIIW ;II ICH ;L\ great ;LS the open stream. so the stream should he closed
hclorc 3 huller thdl ha\ ;~U~O~KIIIC \torage duration is deallocated upon block exit

Librar? 131

ISO/IEC 9899: 1990 (E)

- Zero or more flags (in any order) that modify the meaning of the conversion specification.
- An optional minimum field widrh. If the converted value has fewer characters than the field

width, it will be padded with spaces (by default) on the left (or right, if the left adjustment
flag, described later, has been given) to the field width. The field width takes the form of an
asterisk l (described later) or a decimal integer.‘18

- An optional precision that gives the minimum number of digits to appear for the d. i, O. u.
x, and X conversions. the number of digits to appear after the decimal-point character for e.
E, and f conversions, the maximum number of significant digits for the g and G conversions.
or the maximum number of characters to be written from a string in s conversion. The
precision takes the form of a period (.) followed either by an asterisk * (described later) or
by an optional decimal integer: if only the period is specified, the precision is taken as zero.
If a precision appears with any other conversion specifier, the behavior is undefined.

- An optional h specifying that a following d, i, o. u, x, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will have been promoted
according to the integral promotions. and its value shall be converted to short int or
unsigned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument; an optional 1 (ell)
specifying that a following d. i, o, u, x. or X conversion specifier applies to a long int or
unsigned long int argument; an optional 1 specifying that a following n conversion
specifier applies to a pointer to a long int argument; or an optional L specifying that a
following a, E, f, g. or G conversion specifier applies to a long double argument. If an
h, 1, or L appears with any other conversion specifier. the behavior is undefined.

- A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this
case, an int argument supplies the field width or precision. The arguments specifying field
width, or precision, or both, shall appear (in that order) before the argument (if any) to be
convened. A negative field width argument is taken as a - flag followed by a positive field
width. A negative precision argument is taken as if the precision were omitted.

The flag characters and their meanings are

The result of the conversion will be left-justified within the field. (It will be right-justified
if this flag is not specified.)

+ The result of a signed conversion will always begin with a plus or minus sign. (It will
begin with a sign only when a negative value is converted if this flag is not specified.)

space If the first character of a signed conversion is not a sign. or if a signed conversion results
in no characters, a space will be prefixed to the result. If the space and + flags both
appear, the space flag will be ignored.

n The result is to be converted to an “alternate form.” For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion, a
nonzero result will have Ox (or OX) prefxed to it. For e. E. f, g. and G conversions, the
result will always contain a decimal-point character. even if no digits follow it.
(Normally. a decimal-point character appears in the result of these conversions only if a
digit follows it.) For g and G conversions. trailing zeros will not be removed from the
result. For other conversions. the behavior is undefined

I IX Note that 0 is taken as a flag, not as the beginning of a field width.

132 Library

ISO/IEC 9899.1990 (E)

0 For d. i. o. u. x. X. e. E. f. g. and G conversions. leading zeros (following an)
indication of sign or base) are used to pad to the field width. no space padding is
performed. If the 0 and - flags both appear, the 0 flag will be ignored. For d. i. o. u.
x. and X conversions. if a precision is specified. the 0 flag will be ignored For other
conversions, the behavior is undefined.

The conversion specifiers and their meanings are

d, i The int argument is converted to signed decimal in the style (-]dddd. The
precision specifies the minimum number of digits to appear, if the value being
converted can be represented in fewer digits. it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a precision of
zero is no characters.

o, u, x,X The unsigned int argument is converted to unsigned octal (0). unsigned decimal
(u). or unsigned hexadecimal notation (x or X) in the style dddd, the letters abcdef
are used for x conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits. it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a precision of zero is no
characters.

f The double argument is converted to decimal notation in the style [-]ddd.ddd,
where the number of digits after the decimal-point character is equal to the precision
specification. If the precision is missing, it is taken as 6: if the precision is zero and
the # flag is not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits.

e,E The double argument is converted in the style [-]d.dddekdd, where there is one
digit before the decimal-point character (which is nonzero if the argument is nonzero)
and the number of digits after it is equal to the precision: if the precision is missing,
it is taken as 6. if the precision is zero and the # flag is not specified. no decimal-
point character appears. The value is rounded to the appropriate number of digits.
The E conversion specifier will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. If the value is zero, the
exponent is zero.

gtG The double argument is converted in style f or e (or in style E in the case of a G
conversion specifier). with the precision specifying the number of significant digits.
If the precision is zero. it is taken as I The style used depends on the value
converted: style e (or E) will be used only if the exponent resulting from such a
conversion is lebh than -1 or greater than or equal to the precision. Trailing zeros are
removed tram the tractional portion of the result. a decimal-point character appears
only it it i\ followed b) a digit

C The int argument i\ converted to an unsigned char. and the resulting character
is writren.

s The argument shall be ;I pointer to an array of character type.“” Characters from the
array are written up to tbul not including) a terminating null character: if the precision
i> hpecitied. no more rhan rhar many characters are written. If the precision is not
specified or i\ greater than the hize of the array, the array shall contain a null
character

I IY No special provision\ arc made for muhibyte characters .

Library I33

ISO/IEC 9899: 1990 (E)

P The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters. in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is n.r+treft the number of
characters written to the output stream so far by this call to fptintf. No argument
is converted.

% A % is written. No argument is converted. The complete conversion specification
shall be %%.

If a conversion specification is invalid. the behavior is undefined “c

If any argument is. or points to, a union or an aggregate (except for an array of character type
using %s conversion, or a pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small held width cause truncation of a field: if the result of a
conversion is wider than the field width. the field is expanded to contain the conversion result.

Returns

The fprintf function returns the number of characters transmitted. or a negative value if an
output error occurred.

Environmental limit

The minimum value for the maximum number of characters produced by any single
conversion shall be 509.

Example

To print a date and time in the form “Sunday. July 3. 10:02” followed by x to five decimal
places:

#include <math.-
#include <stdio.h>
/*...*/
char *week&y, *month; /* [?oirltfl:r to .wiflgs */
int day, hour, min;
fprintf (stdout, “%s, %s %d, %.2d:%.2d\n”,

weekday, month, day, hour, min);
fprintf(stdout, "pi = %.Sf\n", 4 * atan(l.O));

7.9.6.2 The fscanf function

Synopsis

#include <stdio.h>
int fqcanf(FILE *stream, const char *format, . ..).

Description

The fscanf function reads input from the stream pointed to by streaxn. under control of
the string pointed to by format that specilk the admisGblc input sequences and how they are
to be converted for assignment. using subsequent arguments as pointers to the objects to receive
the converted input. If there are insufticient arguments for the tot-mat. the behavior is undefined.
If the format is exhausted while arguments remain. the excess arguments are evaluated (as
always) but are otherwise ignored.

120 See “furure library directions” (7.13 6)

134 Library

ISO/IEC 9899. I 990 (E)

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: one or more white-space characters. an
ordinary multibyte character (neither % nor a white-space character): or a conversion specification
Each conversion specification is introduced by the character %. After the %. the following appear
in sequence:
- An optional assignment-suppressing character *.
- An optional nonzero decimal integer that specifies the maximum field width.
- An optional h. 1 (ell) or L indicating the size of the receiving object. The conversion

specitiers d. i. and n shall be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to long int. Similarly,
the conversion specifiers o. u. and x shall be preceded by h if the corresponding argument is
a pointer to unsigned short int rather than a pointer to unsigned int. or by 1 if it is
a pointer to unsigned long int. Finally. the conversion specitiers e. f. and g shall be
preceded by 1 if the corresponding argument is a pointer to double rather than a pointer to
float, or by L if it is a pointer to long double. If an h, 1, or L appears with any other
conversion specifier. the behavior is undefined.

- A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the fscanf function returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first
non-white-space character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the
specification includes a [. c. or n specitier “’

An input item is read from the stream. unless the specification includes an n specifier An
input item is detined as the longest matching sequence of input characters, unless that exceeds a
specified field width. in which case it is the initial subsequence of that length in the sequence.
The tirst character. if any. after the input item remains unread. If the length of the input item is
zero. the execution of the directive fails this condition is a matching failure. unless an error
prevented input tram the stream. in which case it is an input failure.

Except in the case of a % specitier. the input item (or, in the case of a %n directive. the count
ot input characters) is convened to a type appropriate to the conversion specifier. If the input
item is not a matching sequence. the execution of the directive fails: this condition is a matching
failure. Unless assignment supprcsxion was indicated by a l . the result of the conversion is
placed in the object pointed to by the tirst argument following the format argument that has not
already received a conversion result If this object does not have an appropriate type. or if the
result of the conversion cannot be reprcscnted in the space provided. the behavior is undefined

121 Thehe H hire-space characm\ are na counred against a specilied field width

Library I35

ISO/IEC 9899:1990 (E)

The following conversion specifiers are valid.

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument.
The corresponding argument shall be a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 0 for the base argument. The
corresponding argument shall be a pointer to integer.

0 Matches an optionally signed octal integer. whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument.
The corresponding argument shall be a pointer to unsigned integer. -

U Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

X Matches an optionally signed hexadecimal integer. whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

e, f, g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argument
shall be a pointer to floating.

S Matches a sequence of non-white-space characters.“’ The corresponding argument shall
be a pointer to the initial character of an array large enough to accept the sequence and a
terminating null character, which will be added automatically.

t Matches a nonempty sequence of characters’*’ from a set of expected characters (the
scanset). The corresponding argument shall be a pointer to the initial character of an
array large enough to accept the sequence and a terminating null character, which will be
added automatically. The conversion specifier includes all subsequent characters in the
format string, up to and including the matching right bracket (I). The characters
between the brackets (the scanlisr) comprise the scanset, unless the character after the
left bracket is a circumflex (^), in which case the scanset contains all characters that do
not appear in the scaniist between the circumflex and the right bracket. If the conversion
specifier begins with [] or [“I. the right bracket character is in the scanlist and the
next right bracket character is the matching right bracket that ends the specification;
otherwise the first right bracket character is the one that ends the specification. If a -
character is in the scanlist and is not the first, nor the second where the first character is
a h. nor the last character. the behavior is implementation-defined.

C Matches a sequence of characters”’ of the number specified by the field width (1 if no
field width is present in the directive). The corresponding argument shall be a pointer to
the initial character of an array large enough to accept the sequence. No null character
is added.

P Matches an implementation-defined set of sequences. which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined. If the input item is a value converted
earlier during the same program execution. the pointer that results shall compare equal to
that value, otherwise the behavior of the %p conversion is undefined.

122 No special provisions are made for multibyte characters

136 Library

ISO/IEC 9899: 1990 (E)

n No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call to the fscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fscanf function.

% Matches a single %: no conversion or assignment occurs. The complete conversion
specification shall be %%.

If a conversion specification is invalid. the behavior is undefined.“’

The conversion specifiers E. G. and X are also valid and behave the same as, respectively. e.
9. and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading white
space, where permitted). execution of the current directive terminates with an input failure:
otherwise, unless execution of the current directive is terminated with a matching failure.
execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread
unless matched by a directive. The success of literal matches and suppressed assignments is not
directly determinable other than via the %n directive.

Returns

The fscanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise. the fscanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching failure.

Examples

1. The call:

#include <stdio.h>
/*...*/
int n, i; float x; char name[50];
n = fscanf(stdin, "%d%f%s", hi, LX, name);

with the input line:

25 54.323-l thompson

will assign to II the value 3. to i the value 25. to I the value 5.432. and nante will
contain thompson\O.

2 The call.

#include <stdio.h>
/*. . .*/
int i; float x; char name[50];
fscanf (stdin, “%2d%f%*d % [0123456789] ‘I, hi, hx, name) ;

with input:

56789 0123 56a72

will assign to i the value 56 and to .\ the value 789.0. will skip 0123. and ncInte will
contain 56\0 The next :,haracter read from the input stream will be a.

13 See “future iibrdr) directions” (7.13.6) .

Library 137

ISO/IEC 9899:1990(E)

3. To accept repeatedly from stdin a quantity. a unit of measure and an item name:

#include <stdio.h>
/*...*/
int count: float quant; char units[21], item[21];
while (! feof(stdin) Lb !ferror(stdin)) {

count = fscanf(stdin, "%f%20s of %2Os",
Lquant, units, item);

fscanf(stdin,"%*[^\n]");
1

If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck
lO.OLBS of
dirt
lOOergs of energy

the execution of the above example will be analogous to the following assignments:

qu-t = 2; strcpy(units, “quarts”); strcpy(item, “oil”);
count = 3;
quant = -12.8; strcpy(units, "degrees");
count = 2; /* “C” fails to march “o” */
count = 0; /* “1” fails to match "%f" */

qu=t = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");
count = 3;
count = 0; /* "100e" fails to match "%f" */
count = EOF;

Forward references: the strtod function (7.10.1.4). the strtol function (7.10.1.5). the
strtoul function (7. IO. I .6).

7.9.6.3 The printf function

Synopsis

#include <stdio.h>
int printf(const char *format, . ..).

Description

The printf function is equivalent IO fprintf with the argument stdout interposed
before the arguments to printf.

Returns

The printf function returns the number of characters transmitted. or a negative value if an
output error occurred.

7.9.6.4 The scanf function

Synopsis

#include <stdio.h>
int scanf(const char *format, . ..).

Description

The scanf function is equivalent to fscanf with the argument &din interposed b&m
the arguments to scanf.

.

138 Library

ISO/lEC 9899:1990 (E,

Returns

The scanf function reTurns the value of the macro EOF if an input failure occurs before an\
conversion. Otherwise. the scanf function returns the number of input items assigned. which
can be fewer than provided for. or even zero. in the event of an early matching failure.

7.9.6.5 The sprintf function
Synopsis

#include <stdio.h>
int sprintf (char *s, const char *format, . ..)f

Description

The sprintf function is equivalent to fprintf. except that the argument s specifies an
array into which the generated output is to be written, rather than to a stream. A null character is
written at the end of the characters written: it is not counted as part of the returned sum If
copying takes place between objects that overlap, the behavior is undefined.

Returns

The sprintf function returns the number of characters written in the array, not counting the
terminating null character.

7.9.6.6 The sscanf function

Synopsis

#include <stdio.h>
int sscanf (const char *s, const char *format, . ..).

Description

The sscanf function is equivalent to fscanf, except that the argument s specifies a string
from which the input is to be obtained. rather than from a stream. Reaching the end of the string
is equivalent to encountering end-of-file for the fscanf function. If copying takes place
between objects that overlap. the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, the sscanf function returns the number of input items assigned,
which can be fewer than provided for. or even zero, in the event of an early matching failure.

7.9.6.7 The vfprintf function

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va list arg);

Description

The vfprintf function is equivalent to fprintf, with the variable argument list replaced
by arg. which shall have been initialized by the va-start macro (and possibly subsequent
va arg calls). The vfprintf function does not invoke the va end macro ‘I4

121 As the functions vfprintf. vsprintf. and vprintf invoke the va-arg macro. the value of arg
atter the return is indeterminate .

Library

ISO/IEC 9899:1990 (E)

Returns

The vfprintf function returns the number of characters transmitted. or a negative value if
an output error occurred.

Example

The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function-name, char *fowt, . ..)
t

va-list args;

va-start (args, format) ;
/* print out name of function talrsinSq error */
fprintf (stderr, "ERROR in %s: ", function-name);
/* print out remainder of message */
vfprintf(stderr, format, args);
va-end(args);

1

7.9.6.8 The vprintf function

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vprintf (const char *format, va-list arg);

Description

The vprintf function is equivalent to printf. with the variable argument list replaced by
arg. which shall have been initialized by the va-start macro (and possibly subsequent
va-arg calls). The vprintf function does not invoke the va-end macro.“’

Returns

The vprintf function returns the number of characters transmitted, or a negative value if an
output error occurred.

7.9.6.9 The vsprint f function
Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, const char *format, va-list arg);

Description

The vsprintf finction is equivalent IO sprintf. with the variable argument list replaced
by arg. which shall have been initialized by the va-start macro (and possibly subsequent
va-arg calls). The vsprintf function does not invoke the va-end macro.‘24 If copying
takes place between objects that overlap. the behavior is undefined.

Returns

The vsprintf function returns the number of characters written in the array, nor counting
the terminating null character .

140 Library

ISO/IEC 9899: 1990 (E)

7.9.7 Character input/output functions
7.9.7.1 The fgetc function
Synopsis

#include <stdio . h>
int fgetc (FILE *stream) ;

Description

The fgetc function obtains the next character (if present) as an unsigned char converted
to an int. from the input stream pointed to by stream and advances the associated file
position indicator for the stream (if defined).

Returns

The fgetc function returns the next character from the input stream pointed to by stream
If the stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc returns
EOF. If a read error occurs, the error indicator for the stream is set and fgetc returns EOF.“”

7.9.7.2 The fgets function

Synopsis

#include <stdio.h>
char *fgets (char *s, int n, FILE *stream) ;

Description

The fgets function reads at most one less than the number of characters specified by n from
the stream pointed to by stream into the array pointed to by s. No additional characters are
read after a new-line character (which is retained) or after end-of-file. A null character is written
immediately after the last character read into the array.

Returns

The fgets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

7.9.7.3 The fputc function

Synopsis

#include <stdio.h>
int fputc(int c, FILE *stream);

Description

The fputc function writes the character specified by c (converted to an unsigned char)
to the output stream pointed to by stream at the position indicated by the associated file
position indicator for the stream (if defined), and advances the indicator appropriately. If the file
cannot support positioning requests. or if the stream was opened with append mode, the character
is appended to the output stream.

I?.? An end-of-file and a read error can be distinguished by use of the feof and ferret functions

Library 141

ISO/IEC 9899:1990 (E)

Returns

The fputc function returns the character written. If a wrire error occurs, the error indicator

for the stream is set and fputc refums EOF.

7.9.7.4 The fputs function

Synopsis

#include <stdio.h>
int fputs(const char l s, FILE *stream);

Description

The fputs function writes the string pointed to by s to the stream pointed to by stream.
The terminating null character is not written.

Returns

The fputs function cetums EOF if a write error occurs; otherwise it returns a nonnegative
value.

7.9.7.5 The getc function

Synopsis

#include <stdio.h>
int getc(FILE *stream);

Description

The getc function is equivalent to fgetc. except that if it is implemented as a macro, ir
may evaluate stream more than once, so the argument should never be an expression with side
effects.

Returns

The getc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-tile indicator for the stream is set and getc returns
EOF. If a read error occurs. the error indicator for the stream is set and getc returns EOF.

7.9.7.6 The getchat function

Synopsis

#include <stdio.h>
int getchar(void);

Description

The getchar function is equivalent to getc with the argument stdin.

Returns

The getchar function returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file. the end-of-file indicator for the stream is set and
getchar returns EOF. If a read error occurs. the error indicator for the stream is set and
getchar returns EOF.

7.9.7.7 The gets function

Synopsis

#include <stdio.h>
char *gets(char *s); .

142 Library

ISO/lEC 9899: 1990 (E)

Description

The gets function reads characters from the input stream pointed to by stdin. into the
array pointed to by s, until end-of-file is encountered or a new-line character is read Any neu-
line character is discarded. and a null character is written immediately after the last character read
into the array.

Returns

The gets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array. the contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation, the array contents are indeterminate and a
null pointer is returned.

7.9.7.8 The putt function

Synopsis

#include <stdio.h>
int putc(int c, FILE *stream);

Description

The putt function is equivalent to fputc. except that if it is implemented as a macro. it
may evaluate stream more than once, so the argument should never be an expression with side
effects.

Returns

The putt function returns the character written. If a write error occurs, the error indicator
for the stream is set and putt returns EOF.

7.9.7.9 The putchar function

Synopsis

#include <stdio.h>
int putchar(int c);

Description

The putchar function is equivalent to putt with the second argument stdout.

Returns

The putchar function returns the character written. If a write error occurs, the error
indicator for the stream is set and putchar returns EOF.

7.9.7.10 The puts function

Synopsis

#include <stdio.h>
int puts(const char *s);

Description

The puts function writes the string pointed to by s to the stream pointed to by stdout,
and appends a new-line character to the output. The terminating null character is not written.

Returns

The puts tunction returns EOF if a write error occurs; otherwise it returns a nonnegative
value .

Library 143

ISO/IEC 9899:1990 (E)

7.9.7.11 The ungetc function

Synopsis

#include <stdio.h,
int ungetc (int c, FILE *stream) ;

Description

The ungetc function pushes the character specified by c (converted to an unsigned
char) back onto the input stream pointed to by stream The pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to by stream) to a file positioning function (fseek.
fsetpos. or rewind) discards any pushedlback characters for the stream. The external storage
corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times
on the same stream without an intervening read or file positioning operation on that stream, the
operation may fail.

If the value of c equals that of the macro EOF. the operation fails and the input stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The
value of the file position indicator for the stream after reading or discarding all pushed-back
characters shall be the same as it was before the characters were pushed back. For a text stream,
the value of its file position indicator after a successful call to the ungetc function is
unspecified until all pushed-back characters are read or discarded. For a binary stream, its file
position indicator is decremented by each successful call to the ungetc function; if its value
was zero before a call, it is indeterminate after the call.

Returns

The ungetc function returns the character pushed back after conversion, or EOF if the
operation fails.

Forward references: file positioning functions (7.9.9).

7.9.8 Direct input/output functions
7.9.8.1 The f read function

Synopsis

#include <stdio. h>
size-t fread(void *ptr, size t size, size t nmemb,

FILE *stream) ;

Description -

The fread function reads. into the array pointed to by ptr, up to nmemb elements whose
size is specified by size. from the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of characters successfully read. If an error
occurs. the resulting value of the file position indicator for the stream is indeterminate. If a
partial element is read, its value is indeterminate

Returns

The fread function returns the number of elements successfully read, which may be less
than memb if a read errOr or end-of-file is encountered If size or nmex& is zero, fread
returns zero and the contents of the array and the state of the stream remain unchanged.

144 Library

ISO/lEC 9899: 1990 (E)

7.9.8.2 The fwrite function

Synopsis

#include <stdio.h>
size-t fwrite(const void *ptt, size-t size, size-t nmemb,

FILE *stream) ;

Description

The fwrite function writes. from the array pointed to by ptr, up to nmernb elements
whose size is specified by size. to the stream pointed to by stream The file position
indicator for the stream (if defined) is advanced by the number of characters successfully written.
If an error occurs. the resulting value of the file position indicator for the stream is indeterminate.

Returns
The fwrite function returns the number of elements successfully written, which will be less

than nmernb only if a write error is encountered.

7.9.9 File positioning functions
7.9.9.1 The fgetpos function
Synopsis

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pas);

Description

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its position at the
time of the call to the fgetpos function.

Returns

If successful, the fgetpos function returns zero: on failure, the fgetpos function returns
nonzero and stores an implementation-defined positive value in errno.

Forward references: the f setpos function (7.9.9.3).

7.9.9.2 The fseek function
Synopsis

#include <stdio.h>
int f seek (FILE *stream, long int offset, int whence):

Description

The fseek function sets the tile position indicator for the stream pointed to by stream

For a binary stream. the neu position. measured in characters from the beginning of the file,
is obtained by adding offset to the position specified by whence. The specified position is
the beginning of the tile if whence is SEEK-SET. the current value of the file position indicator
if SEEK-CUR. or end-of-tile if SEEK-END A binary stream need not meaningfully support
fseek calls with a whence value of SEEK-END.

For a text stream. either offset shall be zero. or offset shall be a value returned by an
earlier call to the ftell function on the same stream and whence shall be SEEK SET.

A successful call to the fseek function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fseek call. the next
operation on an update stream may be either input or output.

.

Library 145

ISO/IEC 9899: 1990 (E)

Returns

The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (7.9.9.4).

7.9.9.3 The fsetpos function
Synopsis

#include <stdio.h>
int fsetpos (FILE *stre+n, const fpos-t *pas);

Description

The fsetpos function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos. which shall be a value obtained from an
earlier call to the fgetpos function on the same stream.

A successful call to the fsetpos function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos call. the
next operation on an update stream may be either input or output.

Returns

If successful, the f setpos function returns zero; on failure. the fsetpos function returns
nonzero and stores an implementation-defined positive value in errno.

7.9.9.4 The ftell function
Synopsis

#include <stdio.h>
long int ftell(FILE *stream);

Description

The ftell function obtains the current value of the file position indicator for the stream
pointed to by stream For a binary stream, the value is the number of characters from the
beginning of the file. For a text stream. its tile position indicator contains unspecified
information, usable by the fseek function for returning the file position indicator for the stream
to its position at the time of the ftell call: the difference between two such return values is not
necessarily a meaninpful measure of the number of characters written or read.

Returns

If successful. the ftell function returns the current value of the file position indicator for
the stream On failure, the ftell function returns - IL and stores an implementation-defined
positive value in errno.

7.9.9.5 The rewind function
Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by stream to
the beginning of the tile. It is equivalent IO

(void)fseek(stream, OL, SEEK-SET)

except that the error indicator for the stream is also cleared.

146 Library

ISO/lEC 9899: I990 (E)

Returns

The rewind function returns no value

7.9.10 Error-handling functions
7.9.10.1 The clearerr function

Synopsis

#include <stdio.h>
,void clearert (FILE *stream);

Description

The clearerr function clears the end-of-file and error indicators for the stream pointed to
py stream.

Returns

The clearerr function returns no value.

7.9.10.2 The feof function

Synopsis

#include <stdio.h>
int feof(FILE *stream);

Description

The feof function tests the end-of-tile indicator for the stream pointed to by stream

Returns

The feof function returns nonzero if and only if the end-of-file indicator is set for stream

7.9.10.3 The ferror function
Synopsis

#include <stdio.h>
int ferror(FILE *stream);

Description

The ferror function tests the error indicator for the stream pointed to by stream.

Returns

The ferror function returns nonzero if and only if the error indicator is set for stream

7.9.10.4 The perror function

Synopsis

#include <stdio.h>
void perror(const char l s);

Description

The perror tunction map\ the error number in the integer expression errno to an error
message. It writes a sequence of characters to the standard error stream thus: first (if s is not a
null pointer and the character pointed IO by s is not the null c:haracter), the string pointed to by s
followed by a colon (:) and a space. then an appropriate error message string followed by a
new-line character. The contents of the error message strings are the same as those returned by
the strerror function with argument errno, which are implementation-defined.

.

Library 147

ISO/IEC 9899: 1990 (E)

Returns

The perror function returns no value.

Forward references: the strerror function (7.11.6.2).

148 Library

ISO/IEC 9899: 1990 (E)

7.10 General utilities <stdlib. h>
The header <stdlib. h> declares four types and several functions of general utility. and

defines several macros.‘26

The types declared are size-t and wchar-t (both described in 7.1.6).

div-t

which is a structure typ that is the type of the value returned by the div function. and

ldiv-t
.’

which is a structure type that is the type of the value returned by the ldiv function.

The macros defined are NhL (described in 7.1.6):

EXIT-FAILURE

and

EXIT-$UCCESS

which expand to integral expressions that may be used as the argument to the exit function to
return unsuccessful or successful termination status, respectively, to the host environment:

--=
which expands to an integral constant expression, the value of which is the maximum value
returned by the rand function: and

MB~CUR_MAx

which expands to a positive integer expression whose value is the maximum number of bytes in a
multibyte character for the extended character set specified by the current locale (category
LC-CTYPE), and whose value is never greater than MB-LEN-MM.

7.10.1 String conversion functions
The functions atof. atoi. and atol need not affect the vaiue of the integer expression

errno on an error. If the value of the result cannot be represented, the behavior is undefined.

7.10.1.1 The atof function

Synopsis

#include <stdlib. h>
double atof(const char *nptr);

Description

The atof function converts the initial portion of the string pointed to by nptr to double
representation Except for the behavior on error. it is equivalent to

strtod(nptr, (char **)NULL)

Returns

The atof function returns the converted value.

Forward references: the strtod function (7. IO. I .4).

1% See “tuture library duectionx” (7.13 7)

Library 149

ISO/IEC 9899: 1990 (E)

7.10.1.2 The atoi function

Synopsis

#include <stdlib.h>
int atoi(const char *nptr) ;

Description

The atoi function converts the initial portion of the string pointed to by nptr to int
representation. Except for the behavior on error. it is equivalent to

(int)strtol(nptr, (char **)NULL, 10)

Returns

The atoi function returns the converted value.

Forward references: the strtol function (7.10. I .S).

7.10.1.3 The atol function

Synopsis

#include <stdlib.h>
long int atol(const char *nptr);

Description

The atol function converts the initial portion of the string pointed to by nptr to long
int representation. Except for the behavior on error, it is equivalent to

strtol(nptr, (char **)NULL, 10)

Returns

The atol function returns the converted value.

Forward references: the strtol function (7.10.1 5).

7.10.1.4 The strtod function

Synopsis

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Description

The strtod function converts the initial portion of the string pointed to by nptr to
double representation. First. it decompose\ the input string into three parts: an Initial. possibly
empty, sequence of white-space characters (as specitied by the isspace function), a subject
sequence resembling a floating-point constant. and a tinal string of one or more unrecognized
characters, including the terminating null character of the input string Then, it attempts to
convert the subject sequence to a floating-point number. and returns the result.

The expected form of the subject sequence is an opttonal plus or minus sign, then a nonempty
sequence of digits optionally containing a decimal-point character. then an optional exponent part
as defined in 6. I .3.1, but no floating suffix The subject sequence is defined as the longest initial
subsequence of the input string. starting with the tirst non-uhite-space character, that is of the
expected form. The ubject sequence contain\ no characters if the input string is empty or
consists entirely of whrte space. or if the tirst non-white-space character is other than a sign. a
digit. or a decimal-point character.

If the subject sequence has the expected form. the sequence of characters starting with the
first digit or the decimal-point character (whichever occurs first) is interpreted as a floating
constant according to the rules of 6.1.3.1. except that the decimal-point character is used in place

150 Library

ISO/IEC 9899: 1990 (El

of a period. and that if neither an exponent part nor a decimal-point character appears, a decimal
point is assumed to follow the last digit in the string. If the subject sequence begins with a
minus sign, the value resulting from the conversion is negated. A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the “C” locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form. no conversion is
performed: the value of nptr is stored in the object pointed to by endptr. provided that
endptr is not a null pointer.

Returns

The strtod function returns the converted value, if any. If no conversion could be
performed. zero is returned. If the correct value is outside the range of representable values, plus
or minus HUGE-VAL is returned (according to the sign of the value), and the value of the macro
ERANGE is stored in errno. If the correct value would cause underflow, zero is returned and
the value of the macro ERANGE is stored in errno.

7.10.1.5 The strtol function
Synopsis

#include <stdlib.h>
long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function converts the initial portion of the string pointed to by nptr to long
int representation. First, it decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace function), a subject
sequence resembling an integer represented in some radix determined by the value of base, and
a final string of one or more unrecognized characters. including the terminating null character of
the input string. Then, it attempts to convert the subject sequence to an integer, and returns the
result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 6.1.3.2, optionally preceded by a plus or minus sign, but not including an
integer suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The
letters from a (or A) through z (or 2) are ascribed the values IO to 35; only letters whose
ascribed values are less than that ot base are. permitted. If the value of base is 16. the
characters Ox or OX may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is detined as the longest initial subsequence of the input string, starting
with the tirst non-white-space character. that is of the expected form. The subject sequence
contains no characters it the input string is empty or consists entirely of white space, or if the
tirst non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the tirst digit is interpreted as an integer constant according to the rules of
6. I .3.2 If the subject sequence has the expected form and the value of base is between 2 and
36. it is used as the base for conversion. ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
pointer to the linal string is stored in the object pointed to by endptr, provided that endptr is
not 3 null pointer.

Library I51

ISO/IEC 9899: 1990 (E)

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr. provided that
endptr is not a null pointer.

Returns

The strtol function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable values.
I,@JG_MAx or LONG-MIN is returned (according fo the sign of the value). and the value of the
macro ERANGE is stored in errno.

7.10.1.6 The strtoul function

Synopsis

#include <rtdlib . h>
unsigned long in+ strtoul(const char *nptr, char **endptr,

in+ base);

Description

The strtoul function converts the initial portion of the string pointed to by nptr to
unsigned long int representation. First. it decomposes the input string into three parts: an
initial, possibly empty, sequence of white-space characters (as specified by the isspace
function), a subject sequence resembling an unsigned integer represented in some radix
determined by the value of base, and a final string of one or more unrecognized characters,
including the terminating null character of the inpur string. Then, it attempts to convert the
subject sequence to an unsigned integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 6.1.3.2, optionally preceded by a plus or minus sign, but not including an
integer suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign. but not including an integer suffix. The
letters from a (or A) through z (or 2) are ascribed the values IO to 35; only letters whose
ascribed values are less than that of base are permitted. If the value of base is 16, the
characters Ox or OX may optionally precede the sequence of letters and digits, following the sign
if present.

The subject sequence is defined as the longest initial subsequence of the input string. starting
with the first non-white-space character. that is of the expected form. The subject sequence
contains no characters if the input string i\ empry or consists entirely of white space. or if the
first non-white-space character is other than a Ggn or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interpreted as an integer constant according to the rules of
6.1.3.2. If the subject sequence has the expected form and the value- of base is between 2 and
36. it is used as the base for conversion. ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign. the value resulting from the conversion is negated. A
pointer lo the fina! string is stored in the object pointed to by endptr. provided that endptr is
not a null pointer.

In other than the “C” locale. additional implementation-defined subject sequence Forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed lo by endptr, provided that
endptr is not a null pointer.

I52 Library

ISO/IEC 9899: 1990 (E)

Returns

The strtoul function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable values.
ULONG-MAX is returned. and the value of the macro ERANGE is stored in errno.

7.10.2 Pseudo-random sequence generation functions
7.10.2.1 The rand function

Synopsis

#include <stdlib.h>
int rand(void) ;

Description

The rand function computes a sequence of pseudo-random integers in the range 0 to
RAND~NAX.

The implementation shall behave as if no library function calls the rand function.

Returns

The rand function returns a pseudo-random integer.

Environmental limit

The value of the RAND-MAX macro shall be at least 32767.

7.10.2.2 The srand function
Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand is then called with the same
seed value, the sequence of pseudo-random numbers shall be repeated. If rand is called before
any calls to srand have been made. the same sequence shall be generated as when srand is
first called with a seed value of I.

The implementation shall behave as if no library function calls the srand function.

Returns

The srand function returns no value.

Example

The foliowing functions define a portable implementation of rand and srand.

Library 153

ISO/IEC 9899:1990(E)

static unsigned long int next = 1;

int rand (void) /* RAND_MAx assumed rn be 32767 */
t

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

1

void srand(unsigned int seed)
(

next = seed;
1

7.10.3 Memory management functions
The order and contiguity of storage allocated by successive calls to the calloc. malloc.

and reallot functions is unspecified. The pointer returned if the allocation succeeds is suitably
aligned so that it may be assigned to a pointer to any type of object and then used to access such
an object or an array of such objects in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other
object. The pointer returned points to the start (lowest byte address) of the allocated space. If
the space cannot be allocated, a null pointer is returned. If the size of the space requested is
zero, the behavior is implementation-defined; the value returned shall be either a null pointer or a
unique pointer. The value of a pointer that refers to freed space is indeterminate.

7.103.1 The calloc function
Synopsis

#include <stdlib.h>
void *calloc (size-t nmemb, size-t size) ;

Description

The calloc function allocates space for an array of nmemb objects. each of whose size is
size. The space is initialized to all bits zero.“’

Returns

The calloc function returns either a null pointer or a pointer to the allocated space.

7.10.3.2 The free function
Synopsis

#include <stdlib.h>
void free(void *ptr);

Description

The free function causes the space pointed to by ptr to be deallocated. that is, made
available for further allocation. If ptr is a null pointer. no action occurs. Otherwise, if the
argument does not match a pointer earlier returned by the calloc. malloc, or reallot
function, or if the space has been deallocated by a call to free or reallot, the behavior is
undefined.

117 Note that this need not be the same as the representation of floating-point zero or a null pointer
constant

154 Library

ISO/IEC 9899 1990 (E)

Returns

The free function returns no value.

7.10.3.3 The malloc function

#include <stdlib.h>
void *malloc(size_t size);

Desqiption

The malloc function allocates space for an object whose size is specified by size and
whose value is indeterminate.

Returns

The malloc function returns either a null pointer or a pointer to the allocated space.

7.10.3.4 The reallot function
Synopsis

#include <stdlib.h>
void *realloc(void *ptr, size-t size);

Description

The reallot function changes the size of the object pointed to by ptr to the size specified
by size. The contents of the object shall be unchanged up to the lesser of the new and old
sizes. If the new size is larger, the value of the newly allocated portion of the object is
indeterminate. If ptr is a null pointer, the reallot function behaves like the malloc
function for the specified size. Otherwise, if ptr does not match a pointer earlier returned by
the calloc. malloc. or reallot function, or if the space has been deallocated by a call to
the free or reallot function. the behavior is undefined. If the space cannot be allocated, the
object pointed to by ptr is unchanged. If size is zero and ptr is not a null pointer, the object
it points to is freed.

Returns

The reallot function returns either a null pointer or a pointer to the possibly moved
allocated space.

7.10.4 Communication with the environment
7.10.4.1 The abort function
Synopsis

#include <stdlib.h>
void sbort(void);

Description

The abort function cau)reh abnormal program termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. Whether open output streams
are flushed or open stream5 closed or temporary tiles removed is implementation-detined. An
implementation-delined form of the status mwc~rssfu/ relmination is returned to the host
environment by mean?, of the function call raise (SIGAERT) .

Returns

The abort Function cannot return to its caller.

Library

ISO/IEC 9899: 1990 (E)

7.10.4.2 The atexit functiori

Synopsis

#include <stdlib.h>
int atexit (void (*func) (void)) ;

Description

The atexit function registers the function pointed to by func, to be called without
arguments at normal program termination.

Implementation limits

The implementation shall support the registration of at least 32 functions.

Returns

The atexit function returns zero if the registration succeeds. nonzero if it fails.

Forward references: the exit function (7.10.4.3).

7.10.4.3 The exit function

Synopsis

#include <stdlib. h>
void exit (int status) ;

Description

The exit function causes normal program termination to occur. If more than one call to the
exit function is executed by a program, the behavior is undefined.

First, all functions registered by the atexit function are called, in the reverse order of their
registration.‘28

Next, all open streams with unwritten buffered data are flushed. all open streams are closed,
and all files created by the tmpfile function are removed

Finally. control is returned to the host environment If the value of status is zero or
EXIT-SUCCESS, an implementation-delined form of the status successful femination is
returned. If the value of status is EXIT-FAILURE. an implementation-defined form of the
status unsuccessful termination is returned. Otherwise the status returned is implementation-
defined.

Returns

The exit function cannot return to its caller.

7.10.4.4 The getenv function

Synopsis

#include <stdlib.h>
char *getenv(const char *name);

Description

The getenv function searches an erwirotment lirt. provided by the host environment, for a
string that matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-defined

128 Each function is called as many times as it was registered

156 Library

ISO/IEC 9899: 1990 (El

The implementation shall behave as if no library function calls the getenv function

Returns

The getenv function returns a pointer to a string associated with the matched list member
The string pointed to shall not be modified by the program. but may be overwritten by a
subsequent call to the getenv function. If the specified name cannot be found. a null pointer is
returned.

7.10.4.5 The system function

Synopsis

#include <stdlib.h>
int system(const char *string);

Description

The system function passes the string pointed to by string to the host environment to be
executed by a comnrand processor in an implementation-defined manner. A null pointer may be
used for string to inquire whether a command processor exists.

Returns

If the argument is a null pointer. the system function returns nonzero only if a command
processor is available. If the argument is not a null pointer, the system function returns an
implementation-defined value.

7.10.5 Searching and sorting utilities
7.10.5.1 The bsearch function

Synopsis

#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size t nmemb, size-t size,
int T*compar)(const void *, const void *));

Description

The bsearch function searches an array of nmexnb objects. the initial element of which is
pointed IO by base. for an element that matches the object pointed to by key. The size of each
element of the array is specilied by size.

The comparison function pointed to by compar is called with two arguments that point to
the key object and to an array element. in that order. The function shall return an integer less
than. equal to. or greater than zero if the key object is considered, respectively, to be less than,
to match. or IO be greater than the array element. The array shall consist of: all the elements that
compare less than. all the elements that compare equal to, and all the elements that compare
greater than the key object. in that order ‘Y

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer
if no match is found. If tuo elements compare as equal. which element is matched is
unspecitied

12~ In practice, the enure array is \oned according IO the comparison function

Library 157

ISO/IEC 9899:1990 (E)

7.1052 The qsort function

Synopsis

#include <stdlib.h>
void qsort(void *base, size-t nmemb, size> size,

int (*conrpar)(const void *, .const void *));

Description

The qsort function sorts an array of nmemb objects. the initial element of which is pointed
to by base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function
pointed to by compar. which is called with two arguments that point to the objects being
compared. The function shall return an integer less than. equal to. or greater than zero if the first
argument is considered to be respectively less than. equal to, or greater than the second.

If two elements compare as equal, their order in the sorted array is unspecified.

Returns

The qsort function returns no value.

7.10.6 integer arithmetic functions
7.10.6.1 The abs function

Synopsis

#include <stdlib.h>
int abs(int j);

Description

The abs function computes the absolute value of an integer j. if the result cannot be
represented. the behavior is undefined.‘-‘a

Returns

The abs function returns the absolute value.

7.10.6.2 The div function

Synopsis

#include <stdlib.h>
div_t div(int numer, int denom);

Description

The div function computes the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact. the resulting quotient is the
integer of lesser magnitude that is the nearest IO the algebraic quotient. If the result cannot be
represented. the behavior is undefined. otheruise. quot * denom + rem shall equal numer.

Returns

The div function returns a structure of type div-t. comprising both the quotient and the
remainder. The structure shall contain the lollouing members. in either order:

130 The absolute value of the most negative number cannot be represented in IWO’S complement.

158 Library

ISO/IEC 9899 1990 (E)

int quot; /* quotient */
int rem; / * remainder */

7.10.6.3 The labs fuktion
Synopsis

#include <stdlib.h>
long int labs(long int j);

Description

The labs function is similar to the abs function. except that the argument and the returned
value each have type long int.

7.10.6.4 The ldiv functibn
Synopsis

#include <stdlib.h>
1div-t ldiv(long int numer, long int denom);

The ldiv function is similar to the div function, except that the arguments and the
members of the returned structure (which has type ldiv-t) all have type long int.

7.10.7 Multibyte character functions
The behavior of the multibyte character functions is affected by the LC-CTYPE category of

the current locale. For a state-dependent encoding, each function is placed into its initial state by
a call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as
other than a null pointer cause the internal state of the function to be altered as necessary. A call
with s as a null pointer causes these functions to return a nonzero value if encodings have state
dependency, and zero otherwise. “’ Changing the LC CTYPE category causes the shift state of
these functions to be indeterminate.

7.10.7.1 The mblen function
Synopsis

#include <stdlib.h>
int mblen(const char *s, size-t n);

Description

If s is not a null pointer. the xnblen function determines the number of bytes contained in
the multibyte character pointed to by s Except that the shift state of the xnbtowc function is not
aflected. it iz equiknlent to

mbtowc((wchar t *)0, s, n);

The implementation shall hehnve a\ if no library function calls the mblen function.

Returns

If s is a null pointer. the mblen function returns a nonzero or zero value, if multibyte
character encoding\. respectiveI>. do or do not have state-dependent encodings. If s is not a null
pointer. the mblen tunction either returns 0 (if s points to the null character), or returns the

131 I! the implementarion employ\ special bytes to change the shift state. these bytes do not produce
separate wide character code\. but are grouped with an adjacent multibyte character

.

Library I59

ISO/IEC 9899: 1990 (E)

number of bytes that are contained in the multibyte character (if the next n or fewer bytes form a
valid multibyte character), or returns - 1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.10.7.2).

7.10.7.2 The mbtowc function
Synopsis

#include <stdlib.h>
int mbtowc (wchar-t *pwc, const char *s, size-t n) ;

Description

If s is not a null pointer, the mbtowc function determines the number of bytes that are
contained in the multibyte character pointed to by s. It then determines the code for the value of
type wchar-t that corresponds to that multibyte character. (The value of the code
corresponding to the null character is zero.) If the multibyte character is valid and pwc is not a
null pointer, the mbtowc function stores the code in the object pointed to by pwc. At most n
bytes of the array pointed to by s will be examined.

The implementation shall behave as if no library function calls the mbtowc function.

Returns

If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, the mbtowc function either returns 0 (if s points to the null character). or returns the
number of bytes that are contained in the converted multibyte character (if the next n or fewer
bytes form a valid multibyte character). or returns -I (if they do not form a valid multibyte
character).

In no case will the value returned be greater than n or the value of the MB~CUR~MhX macro.

7.10.7.3 The wctomb function
Synopsis

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description

The wctomb function determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value is wchar (including any change in shift state).
It stores the multibyte character representation in the array object pointed to by s (if s is not a
null pointer). At most MB-CUR MAX characters are stored. If the value of wchar is zero. the
wctomb function is left in the inTtial shift state.

The implementation shall behave as if no library function calls the wctomb function.

Returns

If s is a null pointer. the wctontb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. if s is not a null
pointer. the wctorab function returns -I if the value of wchar does not correspond to a valid
multibyte character. or returns the number of bytes that are contained in the multibyte character
corresponding to the value of wchar.

In no case will the value returned be greater thar the value of the MB-CZuR_MAx macro

.

160 Library

ISO/IEC 9899: 1990 (E)

7.10.8 Multibyte string functions
The behavior of the multibyte string functions is affected by the LC-CTYPE category of the

current locale.

7.10.8.1 The mbstowcs function

Synopsis

#include <stdlib.h>
size-t mbstowcs(wchar-t *pwcs, const char *s, size-t n) ;

Description

The mbstowcs function converts a sequence of multibyte characters that begins in the initial
shift state from the array pointed to by s into a sequence of corresponding codes and stores not
more than n codes into the array pointed to by pwcs. No multibyte characters that follow a null
character (which is converted into a code with value zero) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function, except that the shift state
of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes
place between objects that overlap. the behavior is undefined.

Returns

If an invalid multibyte character is encountered, the mbstowcs function returns
(size-t) -1. Otherwise, the mbstowcs function returns the number of array elements

modified, not including a terminating zero code, if any.‘3’

7.10.8.2 The wcstombs function
Synopsis

#include <stdlib.h>
size-t wcstombs(char *s, const wchar_t *pwcs, size-t n);

Description

The wcstombs function converts a sequence of codes that correspond fo multibyte characters
from the array pointed fo by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by s, stopping if a
multibyte character would exceed the limit of n total bytes or if a null character is stored. Each
code is converted as if by a call to the wctomb function, except that the shift state of the
wctomb function is not affected

No more than n bytes will he modified in the array pointed to by s. If copying takes place
between objects that overlap. the behavior is undefined.

Returns

If a code is encountered that does nor correspond to a valid multibyte character. the
wcstombs function returns (size-t) -1 Otherwise, the wcstombs function returns the
number of bytes moditied. noI including a terminating null character. if any.“’

132 The array will not he null- or zero-terminated if the value returned is n

Library I61

-.--- __--1..-. --- -- . .-.. ~~-- _ , - -~.i.xI 1-‘L. ,. .- L -

ISO /IEC 9899: 1990 (E)

7.11 String handling <string. h>
7.11.1 String function conventions

The header <string. h> declares one type and several functions. and defines one macro
useful for manipulating arrays of character type and other objects treated as arrays of character
tYPe. ‘33 The type is s ize t and the macro is NULL (both described in 7.1.6). Various methods
are used for determining the lengths of the arrays. but in all cases a char * or void *
argument points to the initial (lowest addressed) character of the array. If an array is accessed
beyond the end of an object. the behavior is undefined.

7.11.2 Copying functions
7.11.2.1 The memcpy function

Synopsis

#include <string.h>
void *memcpy (void *sl, const void l s2, s ize-t n);

Descr iption

The memcpy function copies n characters from the object pointed to by s2 into the object
pointed to by s l. If copying takes place between objects that overlap. the behavior is undefined.

Returns

The memcpy function returns the value of s l.

7.11.2.2 The memmove function

Synopsis

#include <string.h>
void l mesunove(void *sl, const void *s2, s ize-t n) ;

Descr iption

The xnen-unove function copies n characters from the object pointed to by s2 into the object
pointed to by s l. Copying takes place ah it the n characters from the object pointed to by s2
are first copied into a temporary array of n characters that does not overlap the objects pointed to
by s l and 92. and then the n characters from the temporary array are copied into the object
pointed to by s l.

Returns

The memmove function returns the value ot s l

7.11.2.3 The st rcpy function

Synopsis

#include <string.h>
char *strcpy(char *sl, const char *s2);

Descr iption

The st rcpy function copies the string pointed to h! s2 (including the terminating null
character) into the array pointed to by s l. If cop\in g tahe\ place hetween objects that overlap.
the behavior is undefned.

13.3 See “future library directions” (7.13.X)

162

.

Library

ISO/lEC 9899 1990 (E,

Returns

The strcpy function returns the value of sl

7.11.2.4 The strncpy function

Synopsis

#include <string.h>
char *stmcpy(char *sl, const char *s2, size-t n);

Description

The strncpy function copies not more than n characters (characters that follow. a null
character are not copied) from the array pointed to by s2 to the array pointed to by sl ‘U If
copying takes place between objects that overlap. the behavior is indefined.

If the array pointed to by s2 is a string that is shorter than n characters, null characters are
appended to the copy in the array pointed to by sl. until n characters in all have been written.

Returns

The strncpy function returns the value of sl.

7.11.3 Concatenation functions
7.11.3.1 The strcat function

Synopsis

#include <string.h>
char *strcat(char *sl, const char *s2);

Description
The strcat function appends a copy of the string pointed to by 92 (including the

terminating null character) to the end of the string pointed to by sl. The initial character of s2
overwrites the null character at the end of sl. If copying takes place between objects that
overlap. the behavior is undefined.

Returns

The strcat function returns the value of sl

7.11.3.2 The strncat function

Synopsis

#include <string.h>
char *strncat(char *sl, const char *s2, size t n);

Description

The strncat function append5 not more than n characters (a null character and characters
that follow it are not appended) from the array pointed to by s2 to the end of the string pointed
to by sl The initial character of s2 overwrites the null character at the end of sl. A
terminating null character ih always appended to the result.‘75 If copying takes place between
objects that overlap. the behavior ih undetined.

134 Thuh. if there is no null character in the lirht n characters of the array pointed to by 92, the result will
not be null-terminated

135 Thus. the maximum number of characters that can end up in the array pointed to by sl is
strlen (sl) +n+l

Library 163

ISO/IEC 9899: 1990 (E)

Returns
The strncat function returns the value of 81.

Forward references: the strlen function (7.11.6.3).

7.11.4 Comparison functions
The sign of a nonzero value returned by the comparison functions memcmp. strcmp. and

strnaup is determined by the sign of the difference between the values of the first pair of
characters (both interpreted as unsigned char) that differ in the objects being compared

7.11.4.1 The memanp function

Synopsis
#include <string.h>
int memcap(const void *sl, const void *s2, size-t n);

Description

The mean- function compares the first n characters of the object pointed to by sl to the
first n characters of the object pointed to by ~2.“~

Returns

The mexnq function returns an integer greater than. equal to, or less than zero, accordingly
as the object pointed to by sl is greater than, equal to, or less than the object pointed to by 82.

7.11.4.2 The straap function
Synopsis

#include <string.-
int stranp(const char *sl, const char l s2);

Description
The strcmp function compares the string pointed to by sl to the string pointed to by 82.

Returns

The strcmp function returns an integer greater than. equal to. or less than zero, accordingly
as the string pointed to by sl is greater than. equal to, or less than the string pointed to by 82.

7.11.4.3 The strcoll function
Synopsis

#include <string.h>
int strcoll(const char *sl, cokt char *s2);

Description

The strcoll function compares the string pointed to by sl to the string pointed to by 92,
both interpreted as appropriate to the LC-COLLATE category of the current locale.

136 The contents of “holes” used s padding for purposes of alignment within structure objects are
indelenninate Strings shoner than their allocated space and unions may also cause problems in
comparison

164 Library

ISO/IEC 9899: 1990 (E)

Returns

The strcoll function returns an integer greater than, equal to, or less than zero. accordingly
as the string pointed to by sl is greater than, equal to, or less than the string pointed to by s2
when both are interpreted as appropriate to the current locale.

7.11.4.4 The strncmp function

Synopsis

#include <string.h>
int stmcmp(const char *sl, const char *s2, size-t n) ;

Description

The strncmp function compares not more than n characters (characters that follow a null
character are not compared) from the array pointed to by sl to the array pointed to by ~2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero, accordingly
as the possibly null-terminated array pointed to by sl is greater than, equal to, or less than the
possibly null-terminated array pointed to by s2.

7.11.4.5 The strxfrm function

Synopsis

#include <string. h> *
size-t strxfrm(char *sl, const char *s2, size-t n);

Description

The strxfrm function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by sl. The transformation is such that if the straq function is
applied to two transformed strings, it returns a value greater than, equal to, or less than zero,
corresponding to the result of the strcoll function applied to the same two original strings.
No more than n characters are placed into the resulting array pointed to by sl. including the
terminating null character. If n is zero, sl is permitted to be a null pointer. If copying takes
place between objects that overlap, the behavior is undefined.

Returns

The strxfm function returns the length of the transformed string (not including the
terminating null character). If the value returned is n or more, the contents of the array pointed
to by sl are indeterminate

Example

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxfnn(NULL, s, 0)

7.11.5 Search functions
7.11.5.1 The memchr function

Synopsis

#include <string. h>
void *memchr (const void *s , int c, size-t n);

Library I65

ISO/IEC 9899: 1990 (E)

Description

The mexnchr function locates the first occurrence of c (converted to an unsigned char) in
the initial n characters (each interpreted as unsigned char) of the object pointed to by s.

Returns

The memchr function returns a pointer to the located character. or a null pointer if the
character does not occur in the object.

7.11.5.2 The strchr function

Synopsis

#include <string-h>
char *strchr(const char *s, int c);

Description

The strchr function locates the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

The strchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the string.

7.11.5.3 The strcspn function

Synopsis

#include <string.h>
size-t strcspn(const char *sl, const char *s2);

Description

The strcspn function computes the length of the maximum initial segment of the string
pointed to by sl which consists entirely of characters IKM from the string pointed to by 92.

Returns

The strcspn function returns the length of the segment.

7.11.5.4 The strpbrk function

Synopsis

#include <.string.h>
char *strpbrk(const char *sl, const char *s2);

Description

The strpbrk function locates the tir)rt occurrence in the string pointed to by sl of any
character from the string pointed to by ~2.

Returns

The strpbrk function returns a pointer IO rhc character. or a null pointer if no character
trom 92 occurs in sl

7.11.5.5 The strrchr function

Synopsis

#include <string.h>
char *strrchr(const char *s, int c);

166 Library

.

ISO/IEC 9899.1990 (E)

Description

The strrchr function locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

Returns

The strrchr function returns a pointer to the character, or a null pointer if c does not occur
in the string.

7.11.5.4 The strspn function

Synopsis

#include <string.h>
size-t strspn(const char *sl, con& char *s2);

Description

The strspn function computes the length of the maximum initial segment of the string
pointed to by sl which consists entirely of characters from the string pointed to by 92

Returns

The strspn function returns the length of the segment.

7.11.5.7 The strstr function

Synopsis

#include <string.h>
char *strstr(const char *sl, const char *s2);

Description

The strstr function locates the first occurrence in the string pointed to by sl of the
sequence of characters (excluding the terminating null character) in the string pointed to by s2

Returns

The strstr function returns a pointer to the located string. or a null pointer if the string is
not found. If s2 points to a string with zero length. the function returns sl.

7.11.5.8 The strtok function

Synopsis

#include <string.h>
char *strtok(char *sl, const char "~2);

Description

A sequence of calls IO the strtok function breaks the string pointed to by sl into a
sequence of tokens. each of which is delimited by a character from the string pointed to by s2.
The tirst call in the sequence has sl as its first argument. and is followed by calls with a null
pointer as their tirst argument The separator string pointed to by s2 may be different from call
to call

The tirst call in the sequence searches the string pointed to by sl for the first character that is
/IO/ contained in the current separator string pointed to by s2. If no such character is found. then
there are no tokens in the string pointed to by sl and the strtok function returns a null
pointer. It such a character is tound, it is the start of the first token.

The strtok function then searches born there for a character that is contained in the current
separator string. If no such character is found. the current token extends to the end of the string
pointed IO by sl. and subsequent searches for a token will return a null pointer. If such a
character is found. it is overwritten by a null character. which terminates the current token. The

Library 167

ISO/IEC 9899: 1990 (E)

strtok function saves a pointer to the following character. from which the next search for a
token will start.

Each subsequent call, with a null pointer as the value of the first argument. starts searching
from the saved pointer and behaves as described above.

The implementation shall behave as if no library function calls the strtok function.

Returns

The strtok function returns a pointer to the first character of a token. or a null pointer if
there is no token.

Example

#include <string.h>
static char str[] = "?a???b,,,#c";
char l t;

t = strtok(str, “?“); /* t points to the token “a” */
t = strtok(NULL, "I"); /* t points to the token "??b" */
t = strtok(NULL, I*#, ‘I) ; /* t points to the tohen “c” */
t = strtok(NULL, "?"); /* t is a rtitll pointer */

7.11.6 Miscellaneous functions
7.11.6.1 The memset function
Synopsis

#include <string.h>
void *memset(void *s, int c, size-t n);

Description

The meatset function copies the value of c (converted to an unsigned char) into each of
the first n characters of the object pointed to by s

Returns

The memset function returns the value of s

7.11.6.2 The strerror function
Synopsis

#include <string.h>
char l strerror(int errnum);

Description

The strerror function maps the error number in errnum to an error message string.

The implementation shall behave as if no library function calls the strerror function.

Returns

The strerror function returns a pointer to the string. the contents of which are
implementation-defined. The array pointed to shall not he modified by the program. but may be
overwritten by a subsequent call to the strerror function.

168 Library

ISO/IEC 9899: 1990 (E)

7.11.6.3 The strlen function

Synopsis

#include <string.h>
size-t strlen(const char *s);

Description

The strlen function computes the length of the string pointed to by s.

Returns

The strlen function returns the number of characters that precede the terminating null
character.

Library ’ 169

ISO/lEC 9899: 1990 (E)

7.12 Date and time <time. h>
7.12.1 Components of time

The header <time. h> defines two macros. and declares four types and several functions for
manipulating time. Many functions deal with a tulerldur tinla that represents the current date
(according to the Gregorian calendar) and time. Some functions deal with local rink. which is
the calendar time expressed for some specilic time zone. and with Du~light Su~Yrq Ti~c,. which
is a temporary change in the algorithm for determining local time. The local time zone and
Daylight Saving Time are implementation-defined.

The macros defined are NULL (described in 7. I .6): and

CLOCKS-PER-SEC

which is the number per second of the value returned by the clock function

The types declared are size-t (described in 7 1.6):

clock-t

and

time t

which are arithmetic types capable of representing times: and

struct tm

which holds the components of a calendar time. called the hrokm-don*,? rims. The structure shall
contain at least the following members, in any order. The semantics of the members and their
normal ranges are expressed in the comments.“’

int tm set; /* seconds after the mimcte - [O, 611 */
int tm min; /* minutes afier the how - 10, 591 l /
int tm hour; /* bows sim e midnight - 10. 231 */
int tm-mday; /* da! of tlw mrmrh - /I. 311 */
int tm-mon; /* monrh~ yi,rc 11 Jumcur~~ - 10. I I] */
int tm_year ; /* Tears rim c 19/N */
int tm-wday; /* dap sim 1’ Sw~clu\ - 10. 61 */
int tmgday; /* duy rim 1’ Jtrmcur\ I - 10. 3651 */
int tm-isdst ; /* Daylight Strriyq Tinw j/q */

The value of tm-isdst is positive if Daylight Saving Time is in effect. zero if Daylight Saving
Time is not in effect, and negative if the information is not available

7.12.2 Time manipulation functions
7.12.2.1 The clock function

Synopsis

#include <time.h>
clock-t clock(void);

Description

The clock function determines the proce\\or time u\ed

170 Library

ISO/lEC 9899:1990 (El

Returns

The clock function returns the implementation’s best approximation to the processor time
used by the program since’ the beginning of an implementation-defined era related only to the
program invocation. To determine the time in seconds. the value returned by the clock
function should be divided by the value of the macro CLOCKS-PER-SEC. If the processor time
used is not available or its value cannot be represented. the function returns the value
(clock-t) -1 ‘U

7.12.2.2 The dif ftime function

Synopsis

#include <time.h>
double difftime(time_t timel, time-t time0);

Description

The difftime function computes the difference between two calendar times: time1 -
time0.

Returns

The difftime function returns the difference expressed in seconds as a double.

7.12.2.3 The mktime function

Synopsis

#include <time.h>
time-t mktime(struct tm *timeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the
structure pointed to by timeptr into a calendar time value with the same encoding as that of
the values returned by the time function The original values of the tm-wday and tm_yday
components of the structure are ignored. and the original values of the other components are not
restricted to the ranges indicated above I”) On successful completion, the values of the
tm-wday and tm_yday components of the structure are set appropriately. and the other
components are set to represent the specified calendar time, but with their values forced to the
ranges indicated above: the tinal value of tm-mday is not set until tm-mon and tmgear are
determined.

Returns

The mktime tunction returns the specitied calendar time encoded as a value of type
time t If the calendar time cannot be represented. the function returns the value
(time_t) -1

Example

What day of the week I\ Julv 4. Xt)I”

I 18 In order IO mea\urc the III~C spent III ;r profran the clock function should be called at the start of the
program and IIS return \alur \uhtractrd tram the value returned by subsequent calls

13~ Thus a po\itr\c or 7cro \aluc lor tm isdst causes the mktime function to presume initially that
DaylIght Saving Time rcqxtl\cl) i\ (F i\ not in eflect for the specified time A negative value causes
II IO attempt to detcrmrnc whether DaylIght Saving Time is in effect for the specified time

Library 171

ISO/IEC 9899: 1990 (E)

#include <stdio.h>
#include <time.h>
static const char l const wday[l = I

~~Sunday~@ , "Monday", "Tuesday", "Wednesday",
l lThurs&yvW, l'Friday", "Saturday", "-unknown-"

1;
struct tm time-str;
/*...*/

time-str. tmJear = 2001 - 1900;
t ime-str.tm_mon = 7 - 1;
t ime~str.tm_mday = 4;
time-str . tan-hour = 0;
time-str. tm-min = 0;
time-str.tm-set = 1;
time-str.tm-isdst = -1;
if (mktime(6time~str) == -1)

time_str.tm-wday = 7;
printf("%s\n", wday [time-str . tm-wday]) ;

7.12.2.4 The time function

Synopsis

#include <time-h>
time-t ti.me(time t *timer) ;

Description

The time function determines the current calendar time. The encoding of the value is
unspecified.

Returns

The time function returns the implementation’s best approximation to the current calendar
time. The value (time-t) -1 is returned if the calendar t ime is not available. If timer is not
a null pointer, the return value is also assigned lo the object it points to.

7.12.3 Time conversion functions
Except for the strftime function, these functions return values in one of two static objects:

a broken-down time structure and an array of char. Execution of any of the functions may
overwrite the information returned in either of these objects by any of the other functions. The
implementation shall behave as if no other library functions call these functions.

7.12.3.1 The asctime function

Synopsis

#include <time.h>
char *asctime(const struct tm *timeptr);

Description

The asctime function converts the broken-down time in the structure pointed lo by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\O

using the equivalent of the following algorithm
.

172 Library

ISO/lEC 9899: I990 (E)

char *asctime(const struct tm l timeptr)

static const char wday_name[71[31 = t
VVS~VV, !t~on~, ~?t&~etl, "led", Wb'fhut*, WFri*t, "Sat"

1;
static const char mon_name[l2] [3] = {

,VJan”, “F&)“, tt&r”, “Apr”, “my”, “Jun”,
vtJul*' , “Aug” , "Sep" , "Ott" , "Nov" , "Dee"

1;
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday-name[timeptr->tm-w&y],
man-name[timeptr->tm-man],
timeptr->tm-mday, timeptr->tm-hour,
timeptr->tm-min, timeptr->tm-set,
1900 + timeptr-XmJyear);

return result:

Returns

The asctime function returns a pointer to the string.

7.12.3.2 The ctime function

Synopsis

#include <ti.me.h>
char *ctime (const time-t *timer) ;

Description

The ctime function converts the calendar time pointed to by timer to local time in the
form of a string. It is equivalent to

asctime(localtime(timer))

Returns

The ctime function returns the pointer returned by the asctime function with that broken-
down time as argument.

Forward references: the localtime function (7.1 X.3.4).

7.12.3.3 The gmtime function

Synopsis

#include <time.h>
struct tm *gmtime(const time t *timer);

Description

The gmtime function converts the calendar time pointed to by timer into a broken-down
time. expressed as Coordinated Universal Time (UTC).

Returns

The gmtime function returns a pointer to that object, or a null pointer if UTC is not
available

a

Library 173

ISO/IEC 9899: 1990 (E)

7.12.3.4 The localtime function

Synopsis

#include <time.h>
struct tm *localtime(const time-t *timer);

Description

The localtime function converts the calendar time pointed to by timer into a broken-
down time. expressed as local time.

Returns

The localtime function returns a pointer to that object.

7.12.3.5 The strftime function
Synopsis

#include <time. h>
size t strftime(char *s, size-t maxsize,

const char *format, const struct tm *timeptr) ;

Description

The strftime function places characters into the array pointed to by s as controlled by the
string pointed to by format. The format shall be a multibyte character sequence. beginning and
ending in its initial shift state. The format string consists of zero or more conversion specifiers
and ordinary multibyte characters. A conversion specifier consists of a % character followed by a
character that determines the behavior of the conversion specifier. All ordinary multibyte
characters (including the terminating null character) are copied unchanged into the array. If
copying takes place between objects that overlap, the behavior is undefined. No more than
maxsize characters are placed into the array, Each conversion specifier is replaced by
appropriate characters as described in the following list. The appropriate characters are
determined by the LC-TIME category of the current locale and by the values contained in the
structure pointed to by timeptr.

%a
%A
%b
%B
%c
%d
%H
%I
% j
%m
%M
%P

%S
%U

%w
%W

%x is replaced by the locale’s appropriate date representation
%X is replaced by the locale’s appropriate time representation.
%Y is replaced by the year without century as a decimal number (00-99)
%Y is replaced by the year with century’ as a decimal number

is replaced by the locale’s abbreviated weekday name
is replaced by the locale’s full weekday name
is replaced by the locale’s abbreviated month name
is replaced by the locale’s full month name
is replaced by the locale’s appropriate date and time representation
is replaced by the day of the month as a decimal number (01-31).
is replaced by the hour (Z-l-hour clock) a\ a decimal number (00-23)
is replaced by the hour (I?-hour cloch~ a~ a decimal number (01-12).
is replaced by the day of the year a\ a decimal numhrr (001-366)
is replaced by the month as a decm~al number (01-12)
is replaced by the minute as a decimal number (00-59)
is replaced by the locale’s equivalent of the AM/PM designations associated with a I?-
hour clock
is replaced by the second as a decimal number (00-61)
is replaced by the week number 01 the year tthc tir\t Sunday as the first day of week I)
as a decimal number (00-53)
is replaced by the weekday as a decimal number (O-6). where Sunday is 0.
is replaced by the week number of the year (the hrst londay as the first day of week I)
as a decimal number (00-53).

174 Library

ISO/IEC 9899.1990 (E)

%Z is replaced by the time zone name or abbreviation. or by no characters if no time zone is
determinable

% % is replaced bq %

If a conversion specilier is not one of the above. the behavior is undefined.

Returns

If the total number of resulting characters including the terminating null character is not more
than maxsize. the strftime function returns the number of characters placed into the arrq
pointed to by s not including the terminating null character. Otherwise. zero is returned and the
contents of the array are indeterminate.

Library 175

ISO/IEC 9899: 1990 (E)

7.13 Future library directions
The following names are grouped under individual headers for convenience. All external

names described below are reserved no matter what headers are included by the program

7.13.1 Errors <ermo. h>
Macros that begin with E and a digit or E and an uppercase letter (followed by any

combination of digits, letters, and underscore) may be added to the declarations in the
<ermo. h> header.

7.13.2 Character handling <ctype . h>
Function names that begin with either is or to. and a lowercase letter (followed by any

combination of digits, letters, and underscore) may be added to the declarations in the
<ctype . h> header.

7.13.3 Localization <locale. h>
Macros that begin with LC- and an uppercase letter (followed by any combination of digits.

letters, and underscore) may be added to the definitions in the <locale. h> header.

7.13.4 Mathematics <math. h>
The names of all existing functions declared in the <math. h> header, suffixed with f or 1.

are reserved respectively for corresponding functions with float and long double arguments
and return values.

7.13.5 Signal handling <signal. h>
Macros that begin with either SIG and an uppercase letter or SIG- and an uppercase letter

(followed by any combination of digits, letters. and underscore) may be added to the definitions
in the <signal. h> header.

7.13.6 Input/output <stdio. h>
Lowercase letters may be added to the conversion specifiers in fprintf and fscanf.

Other characters may be used in extensions.

7.13.7 General utilities <stdlib. h>
Function names that begin with str and a lowercase letter (followed by any combination of

digits. letters. and underscore) may be added to the declarations in the <stdlib. h> header.

7.13.8 String handling <string. h>
Function names that begin with str. mem. or WCS and a lowercase letter (followed by any

combination of digits, letters. and underscore) may be added to the declarations in the
<string. h> header.

1’76 Library

Annexes ISO/IEC 9899.1990 (E)

Annex A
(informative)
I% bliography

1. “The C Reference Manual” by Dennis M. Ritchie. a version of which was published in The C
Programming Language by Brian W. Kemighan and Dennis M. Ritchie, Prentice-Hail, Inc..
(1978). Copyright owned by AT&T.

2. 1984 iusrlpwup Standard by the lusrlgroup Standards Committee. Santa Clara. California. USA.
November 1984.

3. ANSI X3flT- l-82 (1982). American Narional Dictional:v for Information Processing Swems.
Information Processing Systems Technical Report.

4. ANSI/IEEE 754-l 985. American National Standard for Binar! Floating-Point Arithmetic .

Bibliography 177

ISO/IEC 9899: 1990 (E) Annexes

Annex B
(informative)

Language syntax summary

Note - The notation is described in the introduction to clause 3 (Language)

B.l Lexical grammar
B.l.l Tokens
(6. I) token

Leyord
identifiei
constant
string-literal
operator
punctuator

(6. I) preprocessing-token
header-name
identifier
pp-numhei
character-constant
string-literal
operato
punctuator
each non-white-space character that cannot be one of the above

B.1.2 Keywords
(6. I. 1) keyword. one of

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
cant inue for signed void
default got0 sizeof volatile
do if static while

B.1.3 Identifiers
(6.12) idcntifir~

nondigit
identificl nondigit
identifier digit

(6.12) nondigit one of
abcdefghij klm
nopqrs tuvwxyz
ABCDEFGHI J K L M
NOPQRS TUVWXYZ

(6 1.2) digit one of
0123456789

178 Language syntax summary

Annexes

B.1.4 Constants
(6.1.3) c omrur~r

fioarit7g-c ot7sfatit
integer -co~7~furff
eti7in7era~iot7-cot7s~at7~
charac rev-canstunt

(6.1.3.1) poorit7R-(,ot7srut7r
fi 0~ rional-c ftt7s[anf c.vponet7r-parr floating-.@i \
di,yit-sfquenc c e.ywtietit-part j/o0 iti+&i.\

y? 0pr
opr

(6. I 3. I) ftwriot7ul-c 017s~ut7~
digit-scq7ietii e o/71 * digit-seq7tence
digit-sey7ret7c e .

(6 13.1) e.\pcment-purr
e sign
E sign

opr digif-seqrrencv

opt digit-sequence

(6.1.3.1) sigt7 one of
+ -

(6 1.3. I) digit-sey7retn e
digit
digit-sey7renc.e digit

(6.13. I) gloating-s7q@ one of
flF L

(6. I .3.2) integer-consranr:
decimal-consranr integer-suffioppt
octal-constanr inregev-sufjb
he.\adec inlal-constat7t inw&%7@v~tp,

(6. I 3.2) ckin7al-c otirrut7l
tiotixro-digit
decinlal-c ot7.wt7I digir

(6 I 3.3) octul-c on.vul7f
0

ISO/IEC 9899 1990 (E)

(6 I 3.2 1 liewd~~ iniul-(017 Y~IIII
Ox Ire? wtkc inrul-di,qir
OX hcf~odiv iniul-i/i,yir
Ili~wtkc ittrul-c otiskn71 Ii~~wd~~ rniul-digir

(6 1.3 2) tiot7:cto-digir one of
1 2 3 4 5 6 7 8 9

(6 I .3 2) o(rul-drgir one ot
01234567

(6 I 3 1) irrwdcc inrttl-tligir one of
0123456789
abcdef
ABCDEF

Language syntax summary

.

179

ISO/IEC 9899: 1990 (E) Annexes

(6.1.3.2) integer&iv
unsigned-suffrx long-suffi.~ Opt
long-s@\ unsigned-su&vo,,,

(6. I .3.2) unsigned-s&\ one of
u u

(6.1.3.2) long-su& one of
1 L

(6.1.3.3) enumeration-canstant
identifret

(6.1.3.4) character-constant
’ c-char-sequence’
L’ c-char-sequence’

(6.1.3.4) L -char-sequence
c-chat
c-char-sequence c-char

(6.1.3.4) c-chat
any member of the source character set except

the single-quote ’ . backslash \, or new-line character
escape-sequence

(6.1.3.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

(6.1.3.4) simple-escape-sequence: one of
\’ \” \? \\
\a \b \f \n \r \t \v

(6. I .3.4) octal-escape-sequence.
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit 01 tol-digit

(6.1.3.4) hexadecimal-escape-sequent e:
\x hesodec imal-digit
he.\adec imal-esc ape-seyuenc e he radcc imul-digit

B.1.5 String literals
(6.1 4) string-literal

“s-l har-sequent e ”
L”s-r.har-seqrrenr’~” ” Opt

(6.1 4) s-char-sequence
s-chat
s-char-sequence s-chat

(6.1.4) s-char, ’
any member of the source character set except

t e double-quote ‘I. backslash \. or new-line character
escape-sequence

180 Language syntax summary

Annexes ISO/IEC 9899: 1990 (E)

B.1.6 Operators
(6.1 S) aperaror one of

r 1 (I’. ->
++ -- 6 * + - - ! sizeof
/ % << >> < > <= >= == != A 1 hC 11
? :
= *= /= %= += -= <<= >>= &Z A= I=

, # ##

B.1.7 Punctuators
(6.1.6) punt tuaror one of

1 1 (1 { 1 * , : = ; . . . #

B.1.8 Header names
(6.1.7) header-name.

<h-char--sequence>
“q-char-sequent e”

(6. I .7) h-char-sequence
h-char
h-char-sequent e h-char

(6.1.7) h-chal
any member of the source character set except

the new-line character and >

(6.1.7) q-char-sequence.
q-char
q-char-sequence q-char

(6.1.7) q-char:
any member of the source character set except

the new-line character and ‘*

B.1.9 Preprocessing numbers

Language syntax summary

.

181

ISO/IEC 9899: 1990 (E) Annexes

B.2 Phrase structure grammar
B.2.1 Expressions
(6.3.1) primar~-e~~pressiorl

idettttjier
c wstant
stsing-literal
(expression)

(6.32) posrfi.r-e.~pt-ession
primar? -espressiott
pnsrjh -e.~pressinn [e \p~ cvsiott]
pnstfi.\-e.\:r)ressi~ti (ar~~tfttirrtt-c~~/~t essinti-list
pnsrj..r-r pessinn . idc~titificv~

I’/‘/)

postjix-expression -> idoitifiri
postfi.~-esprersiott ++
posfji.\-espressiott --

(6.3.2) argument-espressiort-list.
assignment-clpressiorl
or~~ttntettt-e.~~ressin,l-Ii.~r , N vri~~ttttir~tit-e.~f,ressiott

(6.3.3) unur~-espression:
postfix-espressioti
++ Imary-expression
- - wary-espressiott
uttar~-operaror last-e.ipt-esvioti
sizeof unary-espsessintt
sizeof (type-name)

(6.3.3) wary-operator one of
6*+-e!

(6.3 4) c ust-e.vpt essiott
rrtwrve.\pt etsioti
(rye-flume) tust-e.\pr r\tiotr

(6.3.5) multiplic atil,c-e~pressiott
c asi-e vprcssiott

182 Language syntax summary

Annexes ISO/IEC 9899.1990 (E)

(6.3.8) rvlatiottal-e.~p~essioil
shift-cvpression
relatioltal-e.\-pre~siori < shift-e.Ipression
relatiotlai-e.~p~essiorl > shift-c~pressinn
r-elatioriul-e.~p-Iessiorr <= shift-e.Ip, essinn
rvlational-e.\pressiorl >= shift-expression

(6.3.9) equalit? -e.lpression
relatio)lal-e.\plessior,

equalit\ -expression == ~elatiorial-e.~prrssion
eqlralit\ -espression ! = rvlatiorlal-e.\p~ession

(63.10) AND-c.vpression
equalit! -e.\pression
AND-e \prcssiort h eyualir?-e.\pressiorl

(6.3.1 I) e.~c,lusil,e-OR-e.~p~cssiotl
AND-espsession
e.~clusi~.e-OR-e.~pre.~siorl A AND-expression

(6 3.12) irlc,lrrsi,,e-OR-e.\pl-Pssion
e.\‘(Itrsir,e-OR-e..\llressiorl
inclusive-OR-e.vpsession 1 e.n,lrrsi~.e-OR-expression

(6.3.13) logical-AND-e.lpression.
irlc.lttsilv-OR-e.\sessiorl
logical-AND-expression hh inclusive-OR-expsession

(6.3.14) logical-OR-e,lpression:
logical-AND-expression
logical-OR-espr-ession 1 1 logical-AND-e.vpression

(6.3.15) conditional-expression:
laRi~.ul-OR-e.~p~essiorl
logic ol-OR-e.~prcssion ? c.\p’ cssion : c~onditional-e.~prvssiorl

(6 3.16) assi,~tlnlertt-e.\p,-essiorl
c,onditiortul-e~pressioll
irliar:~-e.\pl-essio,, ctr.~i~~~inlrtit-o~~cI‘otor assignment-expression

(6.3.16) ussi~~~lnlerlt-re~ut~)~. one of
= *= /= %= += -= <<= >>= 6= A= I=

tm. 17) e\pw~~iorl

usri,p,tr,ic,,rr-c,‘~” c\ \ion
e\p es\iorr , ct\~iprrr~~c~rrl-c~\~7r~c~\sio~l

(6.4) c o~l.~turrt-c’lp~~~~sir~lr

(o,/rlitir~~rtrl-i,\~~, 0 \irw

B.2.2 Declarations
(6.5) de< lu, ution

ile~ lf.n otirm-\pe(ifi0 \ in/t-ilec iu, uto1 -lirt * o/71 ’

Latyuage syntax summar\ 183

ISO/IEC 9899:1990 (E)

(6.5) init-declarator-list. ’
init-declarator
init-declarator-list , init-declarator

(6.5) init-declarator
declarator
declarator = initiaker

(6.5.1) storage-class-spectjier:
typedef
extern
static
auto
register

(6.5.2) ype-specifier.
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

(652.1) struct-or-union-specifier:
struct-or-union identifier opr (struct-declaration-list }
struct-or-union identifier

(6.5.2.1) struct-or-union
stnlct
union

(6.5.2.1) struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

(6.5.2.1) struct-declaration:
specifier-qualifier-list striu t-de(Iorator-lirt ;

(6.5.2.1) specifier-qualifier-list
type-specifier specifier-yrtolifrer -list Opl
type-qualifier- spel ifret -quulijiar--list~~pt

(6.5.2.1) struct-declarator-list
struct-declaratot
struct-dec larator-list , strwt-dec lurator

(6.5.2.1) strut t-declarator
declarator
declaratorC,pt : (onstant-e.~pression

(6.5.2.2) enum-specifier
enum identijier op, { enumcrutor-list)
enum identifier

Annexes

.

184 Language syntax summary

Annexes ISO/IEC 9899:1990 (E)

(6.5.2.2) enumerator-list
enumeratfx
enumerator-list , emfmerator

(6.5.2.2) enumerator
enumeration-constant
enumeration-constant = constant-expression

(6.5.3) t?pe-qffali’er.
const
volatile

(6.5.4) dec larator:
pointerf,p, direct-de{ laratm

(6.5.4) direct-declarator
identifiel
(declarator)

direr t-declarator [

direct-declaratar (
direct-de< loratar (

constant-expression
OPf

parameter-type-list)
identifier-list)

vt
(6.5.4) pointer:

* tape-qf falifrer-listo,
* type-qualifier-list f,iI pointer

(6.5.4) type-qualifier-list:
type-qualifier
type-qualifier-list type-qualtfier

(6.5.4) parameter-type-list:
parameter-list
parameter-list , . . .

(6.5.4) parameter-list:
parametcj -def larution
parameter-list , purameter-declaration

(6.5.4) parameter-declaration
declaration-specijers declarator
declaration-specifiers abstract-declararor

vt
(6.5.4) identifier-list

ideruifrer
idcrrttjk -list , idfvrtifie~

I

(6.5.5) tvpc-nume
spew $et -yrfulifrcr-list ahstruf I-dcf larator op

(6.5.5) ohtt, uf t-declurator
pointer
pointri opr dir cf I-ohstrof t-def 10, ut01

(6.5.5) direct-uhtruf t-def lurotr~~
(uhtrr (11 r-clef iUJ UflJI’)

diret t-ahrtruct-clef lurutw [f onstant-e.\pressinn
diref t-ohstruf t-def 101 at0 :T: (parameter-type-list<,:)

]

(6.5.6) tywdef-nonw
idemifiar

Language syntax summary 185

ISO/IEC 9899: 1990 (E) Annexr

(6.5.7) ;nirialiIcl
a.ssi<(wncnr-c yn ession
{ initialixr-list }
(initialim -list , }

(6.5.7) initializer-list.
inifializer
initiulixr -1isr , initiulim

B.2.3 Statements
(6.6) stutenwnf

Iuhelfd- sturcnrcnl
1 r)niporrrid-.stotL~nia,it
c.\prcssiorl-.~torc,Ile,lr

.selection-.stotcnicnt
iter-atiori-statc~nieiit
jump-stotenierit

(6.6.1) labeled-stutenwnt
identlficr : .stutenlent
case c o,i.sturit-c.\prc.s.sir,lr : .stutmc~ll
default : statenlent

(6.6.2) conipound-statemetlt
(declu~atiotl-li.sto,,,t .stutcnrort-li.sto,,,I)

(6.6.2) declaration-list
de(laration
declar-ation-list declaration

(6.6.2) statement-list.
statenicnt
stutcrncnt-lisr stuteniem

(6 6 3) c.\prcs.sion- stutcnwlt
c ~pwrskvi . opr I

(6 6.3) sclcc rim-statcnwnt
if (c.\prcs.siori) .stuIcnwiI
if (e.\p cssion) .stutwwIt else s/utmwl/
switch (cvprcssiw~) ~/utww1t

186 Language syntax summary

Annexes ISO/lEC 9899 1990 (El

B.2.4 External definitions
(6.7) t~artslatiort-tolit

e rternal-declar atim
tsattslatio,t-tlltit e.\trsltul-dccla~atio,l

(6.7) external-dec laration
frtric.tiort-delirtitiort
dec larutio~t

(6 7. I) fhc tiou-dejkitiort
dc~la~atio~l-spec.ifiPr.so,,,, dechator- declaratiort-list

f)\”
1 onll,o!~Jlci-.~tUt~nll’,lt

B.3 Preprocessing directives
(6.8) preproc essirlSq-jiir

K’ C’“‘P,>,‘,

(6.8) ~YJI~
pxwp-part
gsorrp gioirp-part

(6.X) g’ orrp-part
pp-toAens neb4*-line
if-section

O/M

uwttrol-line

(6.8.1) if-section .
if-group e/if-gmcps Oj?l eke-group

w
endif-line

(6.8. I) ifgroup:
if uwtstant-e.rpression new-line gtmrp

ifdef identifier new-line groupopt w

ifndef identifier nen4ine grotrpcjp,

(6.X. I) el(/-<ynrcps~
ell~-<~rolrp

elif-gsoiips ehf-f-R~oirp

(6 x 2,
(6X.3)
(6.X.3)
(6 x.3,
(6.X 1)
(6.X.5)
(6.X 6,
(6.X 7,

t outrol-lifw
include
define
define
undef
line
error
p==gma

(6 X.3) IpN’cvr

the left-parenthesis character without preceding white space .

Language syntax summary IX7

ISO/lEC 9899: 1990 (E)

(6.8.3) replacement-list
pp-tokens

w
(6.8) pp-tokens

preprocessing-token
pp-tokens preprocessing-token

(6.8) new-line
the new-line character

188

Annexes

.

Language syntax summary

Annexes ISO/IEC 9899.1990 (E)

Annex C
(informative)

Sequence points

The following are the sequence points described in 5.123.

- The call to a function, after the arguments have been evaluated (6.322).

- The end of the first operand of the following operators: logical AND Lb (6.3.13); logical OR I I
(6.3.14); conditional ? (6.3.15); comma , (6.3.17).

- The end of a full expression: an initializer (65.7); the expression in an expression statement (6.6.3):
the controlling expression of a selection statement (if or switch) (6.6.4): the controlling
expression of a while or do statement (6.65); each of the three expressions of a for statement
(6.6.5.3); the expression in a return statement (6.6.6.4).

Sequence points 189

ISO/IEC 9899:1990 (E)

Annex D
(informative)

Library summary

D.1 Errors <errno.h>
EDOM
ERANGE
errno

D.2 Common definitions <stddef . h>
NULL
offsetof(rype, nlendwi -d~sigfturo/)
ptrdiff-t
size-t
wchar-t

D.3 Diagnostics <assert. h>
NDEBUG
void assert(int expression);

D.4 Character handling <ctype . h>
int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

D.5 Localization <locale. h>
LC ALL
LCCOLLATE
LCCTYPE
LC-MONETARY
LC-NUMERIC
LC-TIME
NULL
struct lconv
char l setlocale(int category, const char *locale);
struct lconv *localeconv(void);

Annsxeh

190

.

Library hummary

Annexes

D.6 Mathematics <math. h>
RVGE-VAL
double acos(double x);
double asin (double x);
double atan(double x);
double atan2(double y, double x);
double cos(double x);
double sin(double x);
double tan(double x);
double cosh(double-x);
double sinh(double x);
double tanh(double x);
double exp(double x);
double frexp(double value, int *exp);
double ldexp(double x, int exp);
double log(double x);
double loglO(double x);
double modf(double value, double *iptr);
double pow(double x, double y);
double sqrt(double x);
double ceil(double x);
double fabs(double x);
double floor(double x);
double fxnod(double x, double y);

ISO/lEC 9899 IYYo (E,

D.7 Nonlocal jumps <set jmp . h>

int setjmp(jmp-buf env);
void longjmp(jmp-buf env, int val);

D.8 Signal handling <signal. h>
sig-atomic t
SIG-DFL -
SIG-ERR
SIG-IGN
SIGARRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM
void (*signal(int sig, void (*func)(int))) (int);
int raise (int sig) ;

Library summq

ISO/IEC 9899:1990 (E) Annexes

D.9 Variable arguments Kstdarg . h>
va-list
void va-start(va-list ap, parruN);
qpe va-arg(va-list ap, We);
void va-end(va_list ap);

D-10 Input/output xstdio. h>
IOFBF

-1OLBF
-1oNBp
z7Fs12
EOF
FILE
FILENAME~MAX
FOPEN_MAX
fp0s-t
L_tmpn=

SEEK-CUR
SEEK-END
SEEK-SET
size-t
stdetr
stdin
stdout
l----x
int remove(const char *filename);
int rename(const char *old, const char *new);
FILE *tmpfile(void);
char *tmpnam(char *s);
int fclose(FILE *stream);
int fflush(F1I.E *stream);
FILE *fopen(const char *filename, const char *mode);
FILE *freopen(const char *filename, const char *mode,

FILE *stream);
void setbuf(FILE *stream, char *buf);
int setvbuf(FILE *stream, char *buf, int mode, size-t size):
int fprintf (FILE *stream, const char *format, . ..).
int fscanf(FILE *stream, const char *format, . ..).
int printf(const char *format, . ..).
int scanf(const char *format, . ..).
int sprintf(char *s, const char *format, . ..).
int sscanf(const char l s, const char *format, . ..).
int vfprintf(FILE *stream, const char *format, va list arg);
int vprintf(const char *format, va list arg);
int vsprintf(char l s, const char *ronnat, va-list arg);
int fgetc(F1I.E *stream);
char *fgets(char *s, int n, FILE *stream);
int fputc(int c, FILF l streaxn);
int fputs(const char ?S, FILE *stream);
int getc(FILE *stream);
int getchar(void);
char *gets(char l s);
int putc(int c, FILE *stream);

192 Library summary

Annexes ISO/IEC 9899:)990(E)

int putchar(int c);
int puts(const char l s);
int ungetc(int c,' FILE *stream);
size-t fread(void *ptr, size-t size, size-t nmemb,

FILE *stream);
size> fwrite(const void *ptr, size-t size, size-t rune&,

FILE *stream);
int fgetpos(FILE *stream, fpos_t *pas);
int fseek (FILE *stream, long int offset, int whence);
int fsetpos(FILE *stream, const fpos t *pas);
long int ftell(FILE *stream);
void rewind(FILE *stream);
void clearerr(FILE *stream);
int feof (FILE *stream);
int ferror(FILE *stream);
void perror(const char *s);

Library summary 193

ISO/IEC 9899:1990 (E)

D.ll General utilities <stdlib. h>

EXIT-FAILURE
EXIT-SUCCESS
MB-CUR~MAX
NULL
RAND_MAx
div_t
ldiv-t
size-t
wchar-t
double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);
double strtod(const char *nptr, char **endptr);
long int strtol(const char *nptr, char **endptr, int base);
unsigned long int strtoul(const char l nptr, char **endptr,

int base);
int rand(void);
void srand(unsigned int seed);
void *calloc(size_t nmemb, size-t size);
void free(void *ptr);
void l malloc (size-t size) ;
void l realloc(void *ptr, size-t size);
void abort(void);
int atexit(void (*func) (void));
void exit(int status);
char l getenv(const char *name):
int system(const char *string):
void *bsearch(const void *key, const void *base,

size-t nmemb, size-t size,
int (*compar) (const void *, const void *));

void qsort(void *base, size-t nmemb, size-t size,
int (*compar) (const void *, const void *));

int abs(int j);
div_t div(int numer, int denom);
long int labs (long int j);
1div-t ldiv(long int numer, long int denom);
int mblen(const char *s, size-t n);
int mbtouc(wchar t *pwc, const char *s, size-t n);
int wctomb(char *s, wchar-t wchar);
size-t mbstowcs(wchar-t *pwcs, const char *s, size-t n);
size-t wcstombs(char l s, const wchar_t *pwcs, size-t n);

Annexes

194 Library summary

Annexes ISO/IEC 9899 1990 cE)

D.12 String handling <string. h>
NULL
size t
void *memcpy(void *sl, const void *s2, size-t n);
void *memmove(void *sl, const void *s2, size-t n);
char *strcpy(char *sl, const char *s2);
char *strncpy(char l sl, const char *s2, size-t n);
char *strcat(char *sl, const char *s2);
char *strncat(char *sl, const char *s2, size-t n);
int memcmp(const void *sl, const void *s2, size-t n);
int strcmp(const char *sl, const char *s?);
int strcoll(const char *sl, const char *s2);
int strncmp(const char l sl, const char *s2, size-t n);
size-t strxfrm(char *sl, const char *s2, size-t n);
void *memchr(const void *s, int c, size-t n);
char *strchr(const char *s, int c);
size-t strcspn(const char *sl, const char *s2);
char l strpbrk(const char *sl, const char *s2);
char *strrchr(const char *s, int c);
size-t strspn(const char *sl, const char *s2);
char *strstr(const char *sl, const char *s2);
char *strtok(char *sl, const char *s2);
void *memset(void l s, int c, size-t n);
char *strerror(int errnum);
size-t strlen(const char *s);

D.13 Date and time <time. h>
CLOCKS-PER-SEC
NULL
clock t
time-t
size t
struct tm
clock-t clock(void);
double difftime(time_t timel, time-t time0);
time> mktime(struct tm *timeptr);
time t time(time t *timer);
char -*asctime(coGst struct tm *timeptr);
char l ctime(const time t *timer);
struct tm *gmtime(const time t *timer);
struct tm *localtime(const time t *timer);
size-t strftime(char *s, size-t maxsize,

const char *format, const struct tm *timeptr);

Library summary

.

195

ISO/IEC 9899:1990(E) Annexes

Annex E
(informative)

Implementation limits

The contents of a header <limits. h> are given below. in alphabetic order. The minimum
magnitudes shown shall be replaced by implementation-defined magnitudes with the same sign. The
values shall all be constant expressions suitable for use in #if preprocessing directives. The
components are described further in 5.2.4.2.1.

#define CHAR_BIT
#define CBAR-Mi%X
#define CBAR-MIN
#define INT-MAX
#define INT-MIN
#define LONG-MAX
#define LONG-MIN
#define MB-LEN-W
#define SCBhR-M?U
#define SCBAR-MIN
#define SBRT-MAX
#define SHRT-MIN
#define UCIuLR_MAx
#define DINT_MAX
#define DLONG_MAX
ldef ine USBRT_MAx

8
UCBAR~M?a 01’ SCBAR~MAX

0 or SCBAR-MIN
+32767
-32767

+2147483647
-2147483647

I

+127
-127

+32767
-32767

255
* 65535

4294967295
65535

The contents of a header <float.h, are given below. The value of FLT_RADIX shall be a
constant expression suitable for use in #if preprocessing directives. Values that need not be constant
expressions shall be supplied for all other components. The components are described further in
5.2.4.2.2.

#define FLT-RODNDS

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal or greater in magnitude (absolute value) to those shown, with the same sign:

#define DBL-DIG
#define DBL-MWT-DIG
#define DBL-MAX-lO_EXP
#define DBL_MAX_EXP
#define DBL-MIN-lO_EXP
#define DBL-MIN-EXP
#define FLT-DIG
#define FLT-MJU?T-DIG
#define FLT-MAX-lO_EXP
#define FLT-MAX-EW
#define FLT-MIN-lO_EXP
#define FLT-MIN-EXP
#define FLT-RADIX
#define LDBL-DIG
#define LDBL_MANT_DIG
#define LDBL_MAX_lO-EXP
#define LDBL-~-EXP
#define LDBL~MIN~lO~EXP
#define LDBL-MIN-EXP

10

+37

-37

6

+37

-37

2
10

+37

-37

196 Implementation limits

Annexes ISO/IEC 9899:1990 (E)

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal to or greater than those shown:

#define DBL-MAX lE+37
#define FLT-MAX lE+37
#define LDBL-MAX lE+37

The values given in the following list shall be replaced by implementation-defined expressions that
shall be equal to or less than those shown:

#define DBL-EPSILON
#define DBL-MIN
#define FLT-EPSILON
#define FLT-MIN
#define LDBL-EPSILON
#define LDBL-MIN

lE-9
lE-37

lE-5
lE-37

lE-9
lE-37

Implementation limits 197

ISO/IEC 9899: 1990 (E, Annexes

Annex F
(informative)

Common warnings

An implementation may generate warnings in many situations. none of which is specined as part ot
this International Standard The followinS are a few of the more common situations

- A block with initialization of an object that has automatic storage duration i.s jumped into (6 I 2 -1)

- An integer character constant includes more than one character or a wide character constant includes
more than one multibyte character (6 I 3 II

- The characters /* are found in a comment (6.1 7)

- An implicit narrowing conversion is encountered. such as the assignment of a long int or a
double to an int. or a pointer to void IO ;I pomter to any type other than a character type (6.21

- An “unordered” binary operator (not comma. hh or 1 1) contains a side-effect to an Ivalue in one
operand. and a side-effect to. or an access to the value of. the identical lvalue in the other operand
(6.3)

- A function is called but no prototype has been supplied (6.32 2)

- The arguments in a function call do not agree in number and type with those of the parameters in a
function definition that is not a prototype (6.322).

- An object is defined but not used (6.5)

- A value is given to an object of an enumeration type other than by assignment of an enumeration
constant that is a member of that type. or an enumeration variable that has the same type. or the
value of a function that returns the same enumeration type (6.522).

- An aggregate has a partly bracketed initialization (6.5 7)

- A statement cannot be reached (6.6).

- A statement with no apparent effect is encountered (6 61

- A constant expression is used as the controlling expression of a selection statement (6 6.4).

- A function has return statements u ith and without expressions (6 6 6 3)

- An incorrectly formed preprocessing group is encountered while shipping a preprocessing group
(6.8. I)

- An unrecopnized #pragma directike I\ cncountcrcd (6 X 6)

198 Common warnings

Annexes ISO/IEC 9899 1990 (E,

Annex G
(informative)

Portability issues

This annex collects some information about portability that appears in this International Standard.

G.l Unspecified behavior
The following are unspecified

- The manner and timing of static initialization (5.1.2).

- The behavior if a printable character is written when the active position is a.t the final position of a
line (5.22).

- The behavior if a backspace character is written when the active position is al the initial position ot
a line (52.2).

- The behavior if a horizontal tab character is written when the active position is at or past the last
defined horizontal tabulation position (5.2.2).

- The behavior if a vertical tab character is written when the active position is at or past the last
defined vertical tabulation position (5.2.2).

- The representations of floating types (6. I .2.5).

- The order in which expressions are evaluated - in any order conforming to the precedence rules.
even in the presence of parentheses (6.3).

- The order in which side effects take place (6.3).

- The order in which the function designator and the arguments in a function call are evaluated
(6.3.2.2).

- The alignment of the addressable storage unit allocated to hold a bit-field (6.5.2.1).

- The layout of storage for parameters (6.7. I)

- The order in which # and ## operations are evaluated during macro substitution (6.8.3.3).

- Whether errno is a macro or an external identifier (7. I .4).

- Whether set jmp is a macro or an external identifier (7.6.1 .I)

- Whether va-end is a macro or an external identifier (7.8.1.3).

- The value of the tile position indicator atter a successful call to the ungetc function for a text
stream. until all pushed-back characters are read or discarded (7 9.7. I I).

- The details of the value \rored by the fgetpos function on success (7.9.9.1).

- The details of the value returned by the ftell function for a text stream on success (7 9.9.4).

- The order and contipuit> of hlorage allocated by the calloc. malloc. and reallot functions
(7.10.3)

- Which of two elements that compare as equal is returned by the bsearch function (7.10.5.1).

- The order in an amp soned by the qsort function ot two elements thar compare as equal
(7 10.5.2)

- The encoding of the calendar time returned by the time function (7 122.3).

Portability issues 199

ISO/IEC 9899: 1990 (E) Annexes

G.2 Undefined behavior
The behavior in the following circumstances is undefined:

- A nonempty source file does not end in a new-line character. ends in new-line character
immediately preceded by a backslash character, or ends in a partial preprocessing token or comment
(5.1.1.2).

- A character not in the required character set is encountered in a source file. except in a
preprocessing token that is never converted to a token. a character constant. a string literal. a header
name. or a comment (5.2.1).

- A comment. string literal. character constant. or header namk contains an invalid multibyte character
or does not begin and end in the initial shift state (5.2.1.2).

- An unmatched ’ or ” character is encountered on a logical source line during tokenization (6.1)

- The same identifier is used more than once as a label in the same function (6.1.2.1).
- An identifier is used that is not visible in the current scope (6.1.2.1).
- Identifiers that are intended to denote the same entity differ in a character beyond the minimal

significant characters (6.1.2).
- The same identifier has both internal and external linkage in the same translation unit (6.1.2.2).
- The value stored in a pointer that referred to an object with automatic storage duration is used

(6.1.2.4).
- Two declarations of the same object or function specify types that are not compatible (6.1.2.6).
- An unspecified escape sequence is encountered in a character constant or a string literal (6.1.3.4).

- An attempt is made to modify a string literal of either form (6.1.4).
- A character string literal token is adjacent to a wide string literal token (6. I .4).

- The characters ’ . \, ‘I, or /* are encountered between the < and > delimiters or the characters ‘,
\, or /* are encountered between the *’ delimiters in the two forms of a header name preprocessing
token (6. I .7).

- An arithmetic conversion produces a result that cannot be represented in the space provided (6.2. I).
- An lvalue with an incomplete type is used in a context that requires the value of the designated

object (6.2.2.1).
- The value of a void expression is used or an implicit conversion (except to void) is applied to a

void expression (6 2.2.2).
- An object is moditied more than once. or is modified and accessed other than to determine the new

value. between two sequence points (6.3)
- An arithmetic operation is invalid (such as division or modulus by 0) or produces a result that

cannot be represented in the space provided (such ah overflow or underflow) (6.3)
- An object has its stored value accessed hy an lvalue that does not have one of the following types:

the declared type of the object, a qualitied version of the declared type of the object, the signed or
unsigned type corresponding to the declared type of the object. the signed or unsigned type
corresponding to a qualified version of the declared type of the object. an aggregate or union type
that (recursively) includes one of the aforementioned types among its members. or a character type
(6.3)

- An argument to a function is a void expression (6.3.2.2)

- For a function call without a function prototype. the number of arguments does not agree with the
number of parameters (6.3.2.2)

200 Portability issues

Annexes ISO/IEC 9899: 1990 (E)

- For a function call without a function prototype, if the function is defined without a function
prototype, and the types of the arguments after promotion do not agree with those of the parameters
after promotion (6.3.2.2).

- If a function is called with a function prototype and the function is not defined with a compatible
type (6.3.2.2).

- A function that accepts a variable number of arguments is called without a function prototype that
ends with an ellipsis (6.3.2.2).

- An invalid array reference, null pointer reference. or reference to an object declared with automatic
storage duration in a terminated block occurs (6.3.3.2).

- A pointer to a function is converted to point to a function of a different type and used to call a
function of a type not compatible with the original type (6.3.4).

- A pointer to a function is converted to a pointer to an object or a pointer to an object is converted
to a pointer to a function (6.3.4).

- A pointer is converted to other than an integral or pointer type (6.3.4).
- A pointer that does not behave like a pointer to an element of an array object is added to or

subtracted from (6.3.6).

- Pointers that do not behave as if they point to the same array object are subtracted (6.3.6).

- An expression is shifted by a negative number or by an amount greater than or equal to the width in
bits of the expression being shifted (6.3.7):

- Pointers are compared using a relational operator that do not point to the same aggregate or union
(6.3.8).

- An object is assigned to an overlapping object (6.3.16.1).

- An identifier for an object is declared with no linkage and the type of the object is incomplete after
its declarator, or after its init-declarator if it has an initializer (6.5).

- A function is declared at block scope with a storage-class specifier other than extern (65.1).

- A structure or union is defined as containing only unnamed members (652.1).

- A bit-field is declared with a type other than int, signed int, or unsigned int (652.1).

- An attempt is made to modify an object with const-qualified type by means of an lvalue with non-
const-qualified type (6.5.3).

- An attempt is made to refer to an object with volatile-qualified type by means of an lvalue with
non-volatile-qualified type (65.3)

- The value of an uninitialized object that has automatic storage duration is used before a value is
assigned (6.5.7)

- An object with aggregate or union type with static storage duration has a non-brace-enclosed
initializer. or an object with aggregate or union type with automatic storage duration has either a
single expression initializer with a type other than that of the object or a non-brace-enclosed
initializer (6.5.7).

- The value of a function is used. but no value was returned (6.6.6.4).

- An identifier with external linkage is used but there does not exist exactly one external definition in
the program for the identifier (6 7).

- A function that accepts a variable number of arguments is defined without a parameter type list that
ends with the ellipsis notation (6 7.1)

Portability issues 201

ISO/TEC 9899: 1990 (E) Annexes

- An identifier for an object with internal linkage and an incomplete type is declared with a rentsrive
definition (6.72)

- The token defined is generated during the expansion of a #if or #elif preprocessing directive
(6.8.1).

- The #include preprocessing directive that results after expansion does not match one ot the two
header name forms (6.8.2).

- A macro argument consists of no preprocessing token5 (6.X 3)

- There are sequences of preprocessing tokens within the list of macro argument5 that would
otherwise act as preprocessing directive lines (6.8.3)

- The result of the preprocessing operator # is not a valid character string literal (6.8.3.3)

- The result of the preprocessing concatenation operator ## is not a valid preprocessing token
(6.8.3.3).

- The #line preprocessing directive that results after expansion does not match one of the two
well-defined forms (6.8.4).

- One of the following identifiers is the subject of a #define or #undef preprocessing directive
defined. LINE_-. --FILE . -TIME--. or --STDC-- (6.8.8) . DATE --

- An attempt is made to copy an object to an overlapping object by use of a library function other
than xnemmove (clause 7).

- The effect if a standard header is included within an external definition; is included for the first time
after the first reference to any of the functions or objects it declares, or to any of the types or
macros it defines; or is included while a macro is defined with a name the same as a keyword
(7.1.2).

- The effect if the program redefines a reserved external identifier (7.1.3).

- A macro definition of errno is suppressed to obtain access to an actual object (7. I .4).

- The parameter nlenlhei-desi,~nattIr- of an offsetof macro is an invalid right operand ot the .
operator for the t>pe parameter or designates bit-field member of a structure (7 1.6).

- A library function argument has an invalid value. unlesh the behavior is specified explicitly (7. I 7)

- A library function that accepts a variable number of arguments is not declared (7.1.7).

- The macro delinition of assert is suppressed to obtain access to an actual function (7.2).

- The argument to a character handling tunction is out of the domain (7.3)

- A macro detinition of set jmp is supprehsed to obtain access to an actual function (7.6)

- An invocation‘of the set jntp macro occur\ in a context other than as the controlling expression in
a selection or iteration statement. or in a comparison uith an integral constant expression (possibly
as Implied by the unary ! operator) ah the controlling expression of a selection or iteration
statement. or as an expression statement (possibly cast to void) (7 6 I I).

- An object of automatic storage class that dots not have volatile-qualified type has been changed
between a set jntp invocation and a longjmp calI and then ha> it\ value accessed (7 6.3.1)

- The longjmp function is invoked tram a nested signal routine (7.6 2.1).

- A signal occurs other than as the result of calling the abort or raise function. and the signal
handler calls any function in the standard library other than the signal function itself or refers to
any object with static storage duration other than by assigning a value to a static storage duration
variable of type volatile sig-atomic-t (7.7.1 I) .

302 Portability issues

Annexes ISO/lEC 989~) IWO (E 1

- The value of errno is referred to after a signal occurs other than as the result of calling the
abort or raise function and the correspondin, m signal handler calls the signal function ~ch
that it returns the value SIG-ERR (7.7 1. I).

- The macro va-arg is invoked with the parameter ap that was passed to a function that invoked
the macro va-arg with the same parameter (7.8).

- A macro definition of va start. va arg. or va-end or a combination thereot is suppre.shed IO
obtain access to an actualfunctlon (7.81)

- The parameter pmn7N of a va start macro is declared with the register storage clash. or
with a tunction or array type. 07 with a type that is not compatible with the type that results atter
application of the default argument promotions (7 8 1.1).

- There is no actual next argument for a va-arg macro invocation (7.8.1.2)

- The type of the actual next argument in a variable argument list disagrees with the type specified b!
the va-arg macro (7.8 I 2).

- The va-end macro is invoked without a corresponding invocation of the va-start macro
(7X.1.3).

- A return occurs from a function with a variable argument list initialized by the va-start macro
before the va-end macro is invoked (7 8. I .3).

- The stream for the fflush function points to an input stream or to an update stream in which the
most recent operation was input (7.9.5.2).

- An output operation on an update stream is followed by an input operation without an intervening
call to the ff lush function or a file positioning function, or an input operation on an update
stream is followed by an output operation without an intervening call to a file positioning function
(7.9.5.3).

- The format for the fprintf or fscanf function does not match the argument list (7.9.6).

- An invalid conversion specification is found in the format for the fprintf or fscanf function
(796)

- A %% conversion specitication for the fprintf or fscanf function contains characters between
the pair of % characters (7.9.6)

- A conversion specification tor the fprintf function contains an h or 1 with a conversion specifier
other than d. i. n, o. u. x. or X. or an L with a conversion specifier other than e, E. f. g, or G
(7 9.6.1).

- A conversion specitication tor the fprintf function contains a # flag with a conversion specitier
ofhcr than o. x. X. e. E. f. g. or G (7 9 6 I)

- A conversion specilicarion for the fprintf function contains a 0 flag with a conversion specifier
oIher than d. i. o. u. x. X. e. E. f. g. or G (7 9 6 I)

- An aggregate or union. or a pointer to an aggregate or union is an argument to the fprintf
function. except tor the convrrhlon hpecitiers %s (for an array of character type) or %p (for a pointer
to void) (7 9.6. I)

- A single conversion by Ihe fprintf function produces more than 509 characters of outpur
(796 I)

- A conversion specification for the fscanf tunction contains an h or 1 with a conversion s, ecitier
other than d. i. n. o. u. or x. or an L with a conversion specifier other than e, f. or g (7.9 6.3)

- A pointer value printed by %p conversion by the fprintf function during a previous program
execution is the argument for %p conversion by the fscanf function (7.9.6.2).

Portability issues 203

ISO/IEC 9899: 1990 (E) Annexes

- The result of a conversion by the fscanf function cannot be represented in the space provided. or
the receiving object does not have an appropriate type (7.9.6.2).

- The result of converting a string to a number by the atof. atoi. or atol function cannot be
represented (7.10.1).

- The value of a pointer that refers to space deallocated by a call to the free or reallot function
is referred to (7.10.3).

- The pointer argument to the free or tealloc function does not match a pointer earlier returned
by calloc, malloc, or reallot. or the object pointed to has been deallocated by a call to
free or reallot (7.10.3).

- A program executes more than one call to the exit function (7.10.4.3).

- The result of an integer arithmetic function cabs. div. labs. or ldiv) cannot be represented
(7.10.6).

- The shift states for the mblen. mbtowc. and wctomb functions are not explicitly reset to the
initial state when the IA-CTYPE category of the current locale is changed (7.10.7).

- An array written to by a copying or concatenation function is too small (7.1 1.2. 7.1 1.3).

- An invalid conversion specification is found in the format for the strftixne function (7.12.3.5).

G.3 Implementation-defined behavior
Each implementation shall document its behavior in each of the areas listed in this subclause. The

following are implementation-defined:

G.3.1 Translation
- How a diagnostic is identified (5.1.1.3).

G.3.2 Environment
- The semantics of the arguments to main (S 1.2.2 I).
- What constitutes an interactive device (5. I 7 3).

G.3.3 Identifiers
- The number of significant initial characters (beyond 31) in an identifier without external linkage

(6.1.2).
- The number of significant initial characters (beyond 6) in an identifier with external linkage (6.1.2).
- Whether case distinctions are significant in an identifier with external linkage (6.1.2).

G.3.4 Characters
- The members of the source and execution character sets, except as explicitly specified in this

International Standard (5.2. I)

- The shift states used for the encoding ot multibyte characters (5.2 1.2).
- The number of bits in a character in the execution character set (5.2.4.2.1).
- The mapping of members of the source character \et (in character constants and string literals) to

members of the ‘execution character set (6. I .3 4)

- The value of an integer character constant that containa :I character or escape sequence not
represented in the basic execution character set or the extend d character set for a wide character
constant (6. I .3.4).

- The value of an integer character constant that contains more than one character or a wide character
constant that contains more than one multibyte character (6.1.3.4).

204 Portability issues

ISO/iEC 9899.1990 (E)

- The current locale used to convert multibyte characters into corresponding wide characters (codes)
for a wide character constant (6.1.3.4).

- Whether a “plain” char has the same range of values as signed char or unsigned char
(6.2.1.1).

G.3.5 Integers
- The representations and sets of values of the various types of integers (6 1 2.5).

- The result of converting an integer to a shorter signed integer. or the result of converting an
unsigned integer to a signed integer of equal length. if the value cannot be represented (6.2.1.2).

- The results of bitwise operations on signed integers (6.3).

- The sign of the remainder on integer division (6.3.5).

- The result of a right shift of a negative-valued signed integral type (6.3.7).

G.3.6 Floating point
- The representations and sets of values of the various types of floating-point numbers (6.1.2.5).

- The direction of truncation when an integral number is converted to a floating-point number that
cannot exactly represent the original value (6.2.1.3).

- The direction of truncation or rounding when a floating-point number is converted to a narrower
floating-point number (6.2.1.4).

G.3.7 Arrays and pointers
- The type of integer required to hold the maximum size of an array - that is, the type of the

sizeof operator, size-t (6.3.3.4. 7.1.1).

- The result of casting a pointer to an integer or vice versa (6.3.4).

- The type of integer required to hold rhe difference between two pointers to elements of the same
array, ptrdiff-t (6.3.6. 7.1.1).

G.3.8 Registers
- The extent to which objects can actually be placed in registers by use of the register storage-

class specifier (6.5. I).

G.3.9 Structures, unions, enumerations, and bit-fields
- A member of a union object is accessed using a member of a different type (6.3.2.3).

- The padding and alignment of members of structures (6.5.2.1). This should present no problem
unless binary data writ!en by one implementation are read by another.

- Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned int
bit-field (65.2. I)

- The order of allocation of bit-tieId\ within a unit (6.5.2.1)

- Whether a bit-field can straddle a storage-unit boundary (652.1).

- The integer type chosen to represent the values of an enumeration type (6.5.2.2).

Portability issues 205

ISO/IEC 9899:1990 (E) Annexes

G.3.10 Qualifiers
- What constitutes an access to an object that has volatile-qualified type (655.3).

G.3.11 Declarators
- The maximum number of declarators that ma\ modify an arithmetic. structure. or union type (6 5 1).

G.3.12 Statements
- The maximum number of case values in a switch statement (6.6.4.2).

G.3.13 Preprocessing directives
- Whether the value of a single-character character constant in a constant expression that control\

conditional inclusion matches the value ot the same character constant in the execution character
set Whether such a character constant may have a negative value (6.8.1).

- The method for locating includable source tiles (6 8.2)

- The support of quoted names for includable source tiles (6.8.2).

- The mapping of source file character sequences (6.82).

- The behavior on each recognized #pragma directive (6 8.6)

- The detinitions for DATE and TIME
are not available (6.88). -- -- --

when respectively. the date and time of translation

G.3.14 Library functions
- The null pointer constant to which the macro NULL expands (7. I .6).

- The diagnostic printed by and the termination behavior of the assert function (7.2).

- The sets of characters tested for by the isalnw isalpha, iscntrl, islower. isprint.
and isupper functions (7.3.1).

- The values returned by the mathematic> functions on domain errors (7.5.1).

- Whether the mathematics functions KY rhe integer expression errno to the value of the macro
EIUNGE on underflow range error> (7.5 I)

- Whether a domain error occurs or zero i\ returned when the fmod function has a second argument
of zero (756.3).

- The set of signals for the signal function (7 7 I. I).

- The hemantics for each signal recogni4 h! the signal tunction (7.7.1.1).

- The dctuuh handling and the handlin s at program \!artup tor each signal recognized by the signal
tunction (7 7 I:1)

- If the equivalent of signal (sig, SIG-DFL) ; ih nor executed prior to the call of a signal
handler. the blocking of the signal that I\ pertormed (7 7. I I)

- Whether the default handling is reher it the SIGILL signal i\ received by a handler specified to the
signal function (7.7. I. I)

- Whether the last line of a text stream requlrc\ ;I tcrmtnating ncu-line character (7.92).

- Whether space characters that are written out lo a text stream immediately before a new-line
character appear when read in (7.9.3)

- The number ot null characters that may hc appended to data written to a binary stream (7.9.2).

- Whether the tile position indicator of an append mode stream is initially positioned at the beginning
or end of the tile (7.9.3).

206 Portability issues

Annexes ISO/lEC 9899: 1990 (E)

- Wliether a write on a text stream causes the associated file to be truncated beyond that point (7 9 3)

- The characteristics of file buffering (7 9.3).

- Whether a zero-length file actually exists (7.9.3).

- The rules for composing valid file names (7.9.3).

- Whether the same file can be open multiple times (7.9.3).

- The effect of the remove function on an open file (7.9.4. I).

- The effect if a file with the new name exists prior to a call to the rename function (7.9.4.2)

- The output for %p conversion in the fprintf function (7.9.6.1).

- The input for %p conversion in the fscanf function (7.9.6.2).

- The interpretation of a - character that is neither the first nor the last character in the scanlist for
% [conversion in the fscanf function (7.9.6.2).

- The value to which the macro errno is set by the fgetpos or ftell function on failure
(7.9.9.1. 7.9.9.4).

- The messages generated by the perror function (7.9.10.4).

- The behavior of the calloc. malloc. or reallot function if the size requested is zero (7.10.3).

- The behavior of the abort function with regard to open and temporary files (7.10.4. I).

- The status returned by the exit function if the value of the argument is other than zero,
EXIT-SUCCESS, or EXIT-FAILURE (7.10.4.3).

- The set of environment names and the method for altering the environment list used by the
getenv function (7.10.4.4).

- The contents and mode of execution of the string by the system function (7.10.4.5).

- The contents of the error message strings returned by the strerror function (7.11.6.2).

- The local time zone and Daylight Saving Time (7.121).

- The era for the clock function (7.12.2.1).

G.4 Locale-specific behavior
The following characteristics ot a hosted environment are locale-specific:

- The content of the execution character set. in addition to the required members (5.2. I).

- The direction of printing (52.2)

- The decimal-point character (7 I I)

- The implementation-dctined a\prc~s 01 character testing and case mapping functions (7 3).

- The collation sequence ot the execution character set (7.1 1 4.4).

- The tormnts tor time and date 17 12.3 5)

Portability issues 207

ISO/IEC 9899: 1990 (E) Annexes

G.5 Common extensions
The following extensions are widely used in many systems, but are not portable to all

implementations. The inclusion of any extension that may cause a strictly conforming program to
become invalid renders an implementation nonconforming. Examples of such extensions are new
keywords, or library functions declared in standard headers or predefined macros with names that do
not begin with an underscore.

G.5.1 Environment arguments /’
In a hosted environment, the main function receives a third argument, char *eny, [] . that points

to a null-terminated array of pointers to char. each of which points to a string that provides
information about the environment for this execution of the process (5.1.2.2.1).

G.5.2 Specialized identifiers
Characters other than the underscore _, letters, and digits, that are not defined in the required source

character set (such as the dollar sign $. or characters in national character sets) may appear in an
identifier (6.1.2).

G.5.3 Lengths and cases of identifiers
All characters in identifiers (with or without external linkage) are significant and case distinctions

are observed (6.1.2).

G.5.4 Scopes of identifiers
A function identifier, or the identifier of an object the declaration of which contains the keyword

extern, has file scope (6.1.2.1).

G.5.5 Writable string literals
String literals are modifiable. Identical string literals shall be distinct (6.1.4).

G.5.6 Other arithmetic types
Other arithmetic types. such as long long int. and their appropriate conversions are defined

(6.2.2. I).

G.5.7 Function pointer casts
A pointer to an object or to void may be cast to a pointer to a function, allowing data to be

invoked as a function (6.3.4). A pointer to a function may be cast to a pointer to an object or to void,
allowing a function to be inspected or modified (for example. by a debugger) (6.3.4).

G.5.8 Non-int bit-field types
Types other than int. unsigned int. or signed int can be declared as bit-fields. with

appropriate maximum widths (6.5.2.1)

G.5.9 The fortran keyword
The fortran declaration specifier may be used in a function declaration to indicate that calls

suitable for FORTRAN should be generated. or that different representations for external names are to
be generated (654.3).

208 Portability issues

Annexes ISO/lEC 9899: 1990 (E)

G.5.10 The asm keyword
The asm keyword may be used to insert assembly language code directly into the translator output

The most common implementation is via a statement of the form

asm (char-acter-string-literal) ;

(6.6).

G.5.11 Multiple external definitions
There may be more than one external definition for the identifier of an object. with or without the

explicit use of the keyword extern. If the definitions disagree, or more than one is initialized. the
behavior is undefined (6.7.2).

G.5.12 Empty macro arguments
A macro argument may consist of no preprocessing tokens (6.8.3).

G.5.13 Predefined macro names
Macro names that do not begin with an underscore, describing the translation and execution

environments, may be defined by the implementation before translation begins (6.8.8).

G.5.14 Extra arguments for signal handlers
Handlers for specific signals may be called with extra arguments in addition to the signal number

(7.7.1.1).

G.5.15 Additional stream types and file-opening modes
Additional mappings from files to streams may be supported (7.9.2). and additional file-opening

modes may be specified by characters appended to the mode argument of the fopen function
(7.9.5.3).

G.5.16 Defined file position indicator
The file position indicator is decremented by each successful call to the ungetc function for a text

stream, except if its value was zero before a call (7.9.7.1 I).

Portability issues 209

ISO/IEC 9899: 1990 (E) Annexes

Index
Only major references are listed.

! logical negation operator. 6.3.3.3
! = inequality operator. 6.3.9

operator. 6.15. 6.8.3.2
punctuator. 6.1.6. 6.8
operator. 6.15, 6.8.3.3

% remainder operator. 6.3.5
%= remainder assignment operator. 6.3.16.2

& address operator. 6.3.3.2
6 bitwise AND operator. 6.3.10
6& logical AND operator. 6.3.13
h= bitwise AND assignment operator. 6.3.16.2

() cast operator. 6.3.4
. () function-call operator, 6.3.2.2

() parentheses punctuator, 6.1.6. 6.5.4.3

l indirection operator. 6.3.3.2
l multiplication operator, 6.3.5
* asterisk punctuator. 6.1.6, 6.5.4.1
*= multiplication assignment operator, 6.3.16.2

+ addition operator, 6.3.6
+ unary plus operator. 6.3.3.3
++ postfix increment operator, 6.3.2.4
++ prefix increment operator. 6.3.3.1
+= addition assignment operator. 6.3.16.2

I comma operator. 6.3.17
, . . . ellipsis. unspecified parameters. 6.5.L~

- subtraction operator, 6.3.6
- unary minus operator. 6.3.3.3
-- posttix decrement operator. 6.3.2.4
-- prefx decrement operator. 6.3.3.1
-= subtraction assignment operator. 6.3.16.2
-> structure/union pointer operator. 6.3.2.3

. structure/union member operator. 6.3.2.3

. . . ellipsis punctuator. 6.1.6. 6.5 3.3

/ division operator. 6.3.5
/* */ comment delimiters. 6.1.7
/= division assignment operntor. 6.3.16.2

: colon punctuator. 6.1.6. 6 S 2.1

; semicolon punctuator. 6.1.6. 6.5. 6 6.3

< less-than operator. 6.3.8
<< left-shift operator. 6.3.7
<<= left-shift assignment operator. 6.3.16.2
<= less-than-or-equal-to operator. 6.3.8

= equal-sign punctuator. 6.1.6. 6.5. 6.5 7
= simple assignment operator. 6.3.16.1
== equal-to operator. 6.3.9

> greater-than operator. 6.3.8
>= greater-than-or-equal-to operator. 6.3.8
>> right-shift operator. 6.3.7
>>= right-shift assignment operator, 6.3.16.2

? : conditional operator. 6.3.15
?? ! trigrdph sequence. I. 5.2.1.1
??’ trigraph sequence. A. 5.2.1.1
?? (trigraph sequence, [. 5.2.1.1
??) trigraph sequence. 1. 5.2.1.1
??- trigraph sequence. -. 5.2.1.1
??/ trigraph sequence. \. 5.2.1.1
??< trigraph sequence, {. 5.2.1.1
??= trigraph sequence. #. 5.2.1.1
??> trigraph sequence,), 5.2.1.1

[] array subscript operator. 6.3.2.1
[] brackets punctuator. 6.1.6. 6.3.2.1. 6.5.4.2

\ backslash chardcter. 5.2.1
\” double-quote-character escape sequence. 6.1.3.4
\’ single-quote-character escape sequence. 6.1.3.4
\? question-mark escape sequence. 6.1.3.4
\\ backslash-character escape sequence. 6.1.3.4
\O null character, 5.2.1. 6.1.3.4. 6.1.4
\a alert sequence, 5.2.2. 6. I .3.4 escape
\b hackspace 5.2.2. 6 I .3 4 escape sequence.
\f term-teed 5.2.2. 6 I.3 3 escape sequence.
\n ncu -line 5.2.2, 6.1.3.4 escape sequence.
\M 1~11 tlicirs octal-character escape sequence,

6.1.3.4
\r carriage-return 5.2.2. 6. I .3 4 escape sequence,
\t horr/ontal-tab 5.2.2, 6. I.3 4 escape sequence.
\v v ertrcal-tab 5.2.2. 6.1.3 4 escape sequence.
\xl~c~~lc~ /tntr/ tligir~ hexadecimal-character escape

sequence. 6.1.3.4

A exclusive OR operator. 6.3.11
h= exclusive OR assignment operator. 6.3.16.2

(} braces punctuator. 6.1.6. 6.5.7. 6.6.2

210 Index

Annexes ISO/IEC 9809 1990 IE)

1 inclusive OR operator. 6.3.12
I= inclusive OR assignment operator. 6.3.16.2
1 1 logical OR operator. 6.3.14

w bitwihe complement operator. 6.3.3.3

DATE macro. 6.8.8
--FILE-- macro. 6.8.8. 7.2.1
--LINE-- macro. 6.8.8. 7.3. I
--STDC-- macro. 6.8.8
--TIME-- macro. 6.8.8
-FOFBFiacro. 7.9.1. 7.9.5.6
-1OLBF macro. 7.9.1. 7.9.5.6
-1ONBF macro. 7.9.1. 7.9.5.6

abort function. 7.2.1.1. 7.10.4.1
abs function. 7.10.6-l
absolute-value functions. 7.5.6.2. 7.10.6.1. 7.10.6.3
abstract declarator. type name. 6.5.5
abstract machine. 5.1.2.3
abstract semantics. 5.1.2.3
aces function. 7.5.2.1
active position. 5.2.2
addition assignment operator, +=. 6.3.16.2
addition operator. +. 6.3.6
additive expressions, 63.6
address operator, C, 63.3.2
aggregate type. 6.1.2.5
alert \a. 52.2. 6.1.3.4 escape sequence.
alignment. detinition of. 3.1
alignment of structure members. 6.5.2.1
AND bitwise. 6. 63.10 operator.
AND operator. logical. &&. 6.3.13
argc parameter. main function. 5.1.2.2.1
argument. function. 6.3.2.2
argument. 3.2
argument promotion, default. 6.3.2.2
argv parameter. -in tunction. 5.1.2.2.1
arithmeriL converhionh. Ural. 6.2.1.5
arilhmctic operators. unar!. 6.3.3.3
arithmetic 6.1.2.5 type.
array declaramr. 6.5.4.2
array parameter. 6.7.1
arm\ hub5cript operator. [1. 6.3.2.1
am) type. 6.1.2.5
arnty type conversion. 6.2.2.1
arrow operator. ->. 6.3.2.3
ASCII character \et. 5.2.1.1
asctime function. 7.12.3.1
asin tunction. 7.5.2.2
assert macro. 7.2.1.1
assert. h header. 7.2
a\Ggnment operators. 6.3.16
asterisk *. 6.1.6. 6.5.4. I punctuaror.
atan function. 7.5.2.3

atan function. 7.5.2.4
atexit funcrion. 7.10.4.2
atof function. 7.10.1.1
atoi function. 7.10.1.2
at01 function. 7.10.1.3
auto storage-class specifier. 6.5.1
automatic storage. reentrancy. 5.1.2.3. 5 2.3
automatic storage duration. 6.1.2.4

backslash character. \. 5.1.1.2. 5.2.1
backspace escape sequence. \b. 5.2.2. 6. I.3 1
base documents. Introduction. annex A.
basic character set. 3.4. 5.2.1
basic type. 6.1.2.5
bibliography. annex A.
binary stream. 7.9.2
bit, definition of. 3.3
bit, high-order. 3.4
bit. low-order. 3.4
bit-field structure member. 6.5.2.1
bitwise operators. 6.3, 6.3.7. 6.3.10, 6.3. Il. 6.3.12
block. 6.6.2
block identifier scope, 6.1.2.1
bold type convention, clause 6.
braces punctuator. { }, 6.1.6. 6.5.7, 6.6.2
brackets punctuator, [1. 6.1.6, 6.3.2.1, 6.5.4.2
break statement, 6.6.6, 6.6.6.3
broken-down-time type. 7.12.1
bsearch function. 7.10.5.1
BDFSIZ macro, 7.9.1. 7.9.2. 7.9.5.5
byre. definition of. 3.4

C program. 5.1.1.1
C Standard, definitions and conventions. clause 3.
C Standard. organization of document. Introduction
C Standard, purpose of. clause 1.
C Standard. references, clause 2.. annex A.
C Standard. scope. restrictions and limits. clause 1.
calloc function. 7.10.3.1
carriage-return escape sequence. \r. 5.2.2. 6.1.3.3
case label. 6.6 I. 6.6.4.2
cahe mapping tunctions. 7.3.2
cast expressions. 6.3.4
cast operator. () , 6.3.4
ceil tunction. 7.5.6.1
char type. 6.1.2.5. 6.2 1.1. 6.52
CHAR-BIT macro. 5.2.4.2.1
CHAR~MAX macro. 5.2.4.2.1
CHAR-MIN macro. 5.2.4.2.1
character- 3.5
character case mapping functions. 7.3.2
character constant. 5 I. 1.2. 5.2. I. 6.1.3.4
character display semantics. 5.2.2
character handling header. 7.3
character input/output functions. 7.9.7

Index 211

ISO/IEC 9899: 1990 (E) Annexes

character sets, 5.2.1
character string literal, 5.1.1.2, 6.1.4
character testing functions, 7.3.1
character type, 6.1.2.5, 6.2.2.1. 6.5.7
character typ conversion. 6.2.1.1
clearerr function, 7.9.10.1
clock function, 7.12.2.1
CLOCKS-PER-SEC macro, 7.12.1, 7.12.2. I
clock-t type, 7.12.1, 7.12.2.1
collating sequence, character set, 5.2.1
colon punctuator, :, 6.1.6. 6.5.2.1
comma operator. , , 6.3.17
command processor, 7.10.4-S
comment delimiters, /* */, 6.1.9
comments. 5.1.1.2. 6.1. 6.1.9
common extensions, G-5
common initial sequence, 6.3.2.3
common warnings, annex F.
comparison functions, 7.11.4
compatible type, 6.1.2.6, 6.52, 6.5.3, 6.5.4
complement operator, -, 6.3.3.3
compliance, clause 4.
composite type, 6.1.2.6
compound assignment operators, 63.16.2
compound statement, 6.6.2
concatenation functions, 7.113
conceptual models, 5.1
conditional inclusion, 6.8.1
conditional operator, ? : , 63.15
conforming freestanding implementation. clause 4.
conforming hosted implementation, clause 4.
conforming implementation, clause 4.
conforming program, clause 4.
const-qualified type, 6.1.2.5, 6.2.2.1. 6.5.3
const type qualifier, 6.5.3
constant. character. 6.1.3.4
constant, enumeration, 6.1.2. 6.1.3.3
constant, floating. 6.1.3.1
constant. integer. 6.1.3.2
constant, primary expression. 6.3.1
constant expressions, 6.4
constants. 6.1.3
constraints. definition of. 3.6
content. structure/union/enumeration, 6.5.2.3
contiguity. memory allocation, 7.10.3
continue statement, 6.6.6, 6.6.6.2
control characters. 5.2.1. 7.3. 7.3.1.3
conversion, arithmetic operands. 6.2.1
conversion, array. 6.2.2.1
conversion, characters and inte ‘ers. 6.2.1.1
conversion. explicit. 6.2
conversion, floating and integral. 6.2.13
conversion. floating types. 6.2.1.4, 6.2.1.5
conversion, function. 6.2.2.1
conversion. function arguments, 6.3.2.2. 6.7.1

conversion. implicit. 6.2
conversion. pointer. 6.2.2.1, 6.2.2.3
conversion. signed and unsigned integers, 6.2.1.2
conversion, void type, 6.2.2.2
conversions. 6.2
conversions. usual arithmetic, 6.2.1.5
copying functions. 7.11.2
cos function, 7.5.2.5
cash function. 7.5.3.1
ctime function. 7.12.3.2
ctype . h header. 7.3

data streams. 7.9.2
date and time header. 7.12
DBL- macros. 5.2.4.2.2
decimal constant. 6.1.3.2
decimal digits, 5.2.1
decimal-point character. 7.1.1
declaration specifiers. 6.5
declarations. 6.5
declarators. 6.5.4
declarator type derivation, 6.1.2.5, 6.5.4
decrement operator, postfix, --. 6.3.2.4
decrement operator, prefix, --, 6.33.1
default argument promotions, 6.3.2.2
default label, 6.6.1, 6.6.4.2
#define preprocessing directive, 6.83
defined preprocessing operator, 6.8.1
definition, 6.5
derived declarator types, 6.1.2.5
derived types. 6.1.2.5
device input/output. 5.1.2.3
diagnostics. 5.1.1.3
diagnostics, assert. h, 7.2
dif ftime function. 7.12.2.2
direct input/output functions, 7.9.8
display device, 5.2.2
div function. 7.10.6.2
div-t type. 7.10
division assignment operator. /=, 6.3.16.2
division operator. /. 6.3.5
do statement. 6.6.5, 6.6.5.2
documentation of implementation. clause 4.
domain error, 7.5.1
dot operator, . . 6.3.2.3
double type. 6.1.2.5, 6.1.3.1. 6.5.2
double type conversion, 6.2.1.4, 6.2.1.5
double-precision arithmetic. 5.1.2.3

element type. 6.1.2.5
EDOM macro, 7.1.4. 7.5, 7.5.1
#elif preprocessing directive, 6.8.1
ellipsis, unspecified parameters, , . . . , 6.5.4.3
#else preprocessing directive, 6.8.1
else statement, 6.6.4, 6.6.4.1

212

Annexes ISO/lEC 9899.1990(E)

end-of-file macro. EOF. 7.3. 7.9.1
end-of-file indicator. 7.9.1. 7.9.7.1
end-of-line indicator. 5.2.1
#endif preprocessing directive. 6.8.1
enuxn type, 6.1.2.5. 6.5.2. 6.5.2.2
enumerated types. 6.1.2.5
enumeration constant. 6.12. 6.1.3.3
enumeration content, 6.5.2.3
enumeration members. 6.5.2.2
enumeration specifiers. 6.5.2.2
enumeration tag. 6.5.2.3
enumerator, 6.5.2.2
environment, clause 5.
environment functions, 7.10.4
environment list, 7.10.4.4
environmental considerations. 5.2
environmental limits, 5.2.4
EOF macro, 7.3, 7.9.1
equal-sign punctuator, =. 6.1.6. 6.5. 6.5.7
equal-to operator, ==. 6.3.9
equality expressions, 6.3.9
ERANGE macro, 7.1.4, 7.5, 7.5.1, 7.10, 7.10.1
errno macro, 7.1.4, 7.5.1. 7.7.1.1.7.9.10.4, 7.10.1
errno. h header, 7.1.4
error. domain, 7.5.1
error, range, 7.5.1
error conditions, 75.1
error handling functions, 7.9.10, 7.1 I .6.2
error indicator, 7.9.1, 7.9.7.1, 7.9.7.3
#error preprocessing directive. 6.8.5
escape sequences, 5.2.1. 5.2.2. 6.1.3.4
evaluation. 6.15. 6.3
exception. 6.3
exciusive OR assignment operator, A=. 6.3.16.2
exclusive OR operator, A. 63.11
executable program. 5.1.1.1
execution environment, character sets, 5.2.1
execution environment limits. 5.2.4.2
execution environments. 5.1.2
execution sequence. 5.1.2.3. 6.6
exit function. S.1 12.3. 7.10.4.3
EXIT FAILURE macro. 7.10. 7 104.3
EXIT-SUCCESS macro. 7.10. 7 10.4.3
explicit conversion. 6.2
exp function. 7.5.4.1
exponent part, floating constant. 6.1.3.1
exponential functions. 7.5.4
expression. 6.3
expression. full. 6.6
expression, primary. 6.3.1
expression. unary. 6.3.3
expression statement. 6.6.3
extended character set. 3.13. 5.2.1.2
extern storage-class specifier. 6 1.22. 6.5.1, 6.7
external definitions, 6.7

external identifiers, underscore. 7.1.3
external linkage. 6.1.2.2
external name. 6.1.2
external object definitions. 6.7.2

fabs function, 7.5.6.2
fOi0se function. 7.9.5.1
feof function. 7.9.10.2
ferror function. 7.9.10.3
f f lush function, 7.9.5.2
fgetc function, 7.9.7.1
f getpos function. 7.9.9.1
fgets function. 7.9.7.2
FILENAME~WUC, 7.9.1
file. closing. 7.9.3
file, creating, 7.9.3
file. opening, 7.9.3
file access functions. 7.9.5
file identifier scope. 6.1.2.1. 6.7
file name, 7.9.3
FILE object type, 7.9.1
file operations, 7.9.4
file position indicator, 7.9.3
file positioning functions, 7.9.9
files, 7.9.3
float type, 6.1.2.5, 6.5.2
float type conversion, 6.2.1.4. 62.15
float. h header, clause 4., 5.2.4.2.2, 7.1.5
floating arithmetic functions, 79.6
floating constants, 6.1.3.1
floating suffix, f or F, 6.1.3.1
floating types, 6.1.2.5
floating-point numbers, 6.1.2.5
floor function, 7.5.6.3
FLT- macros. 5.2.4.2.2
fmod function, 7.5.6.4
f open function, 7.9.5.3
FOPEN MAX macro, 7.9.1. 7.9.3
for statement. 66.5. 6.6.5.3
form-feed character. 5.2. I, 6.1
tot-m-feed escape sequence. \f. 5.2.2. 6.1.3.4
formatted input/output functions. 7.9.6
forward references, definition of. 3.8
fpos-t object type. 7.9.1
fprintf function, 7.9.6.1
fputc function. 5.2.2, 7.9.7.3
fputs function, 7.9.7.4
f read function, 7.9.8.1
free function, 7.10.3.2
freestanding execution environment. 5.12. 5.1.2.1
f reopen function, 7.9.5.4
f rexp function, 7.5.4.2
f scanf function, 7.9.6.2
f seek function, 7.9.9.2
f setpos function. 7.9.9.3

Index 213

ISO/IEC 9899: 1990 (E)

ftell function. 7.9.9.4
full expression. 6.6
fully buffered stream. 7.9.3
function. recursive call. 6.3.2.2
function argument, 6.3.2.2
function body, 6.7. 6.7.1
function call. 6.3.2.2
function call. library. 7.1.7
function declarator, 6.5.4.3
function definition. 6.5.4.3. 6.7.1
function designator. 6.2.2.1
function identifier scope. 6.1.2.1
function image. 5.2.3
function library. 5.1.1.1, 7.1.7
function parameter. 5.1.2.3. I. 6.3.2.2
function prototype. 6.1.2.1, 6.3.2.2, 6.5.4.3. 6.7.1
function prototype identifier scope, 6.1.2.1
function return. 6.6.6.4
function type. 6.1.2.5
function type conversion. 6.2.2.1
function-call operator. () , 6.3.2.2
future directions. Introduction, 6.9, 7.13
future language directions, 6.9
future library directions. 7.13
fwrite function, 7.9.8.2

general utility library, 7.10
getc function, 7.9.7.5
getchar function, 7.9.7.6
getenv function, 7.10.4.4
gets function. 7.9.7.7
gmtime function. 7.12.3.3
goto statement. 6.1.9.1. 6.6.1. 6.6.6. 6.6.6.1
graphic characters. 5.2.1
greater-than operator. >. 6.3.8
greater-than-or-equal-to operator, >=. 6.3.8

header names. 6.1. 6.1.7. 6.8.2
headers. 7.1.2
hexadecimal constant. 6.1.3.2
hexadecimal digit. 6.1.3.2. 6.1.3.1
hexadecimal escape sequence. 6.1.3.4
high-order bit. 3.4
horizontal-tab character. 5.1. I. 6.1
horizontal-tab escape sequence. \t. 5.2.2. 6. I .3 -1
hosted execution environment. 5.12. 5.1.2.2
HUGE-VAL macro. 7.5. 7.5.1. 7 IO 1.4
hyperbolic functions, 7.53

identifier. 6.1.2. 6.3.1
identilier. maximum length. 6.1.2
identilier. reserved. 7.1.3
identitier linkage. 6.1.2.2
identifier list, 6.5.4
identifier name space, 6.1.2.3

identifier scope. 6.1.2.1
identifier type. 6.1.2.5
IEEE floating-point arithmetic standard. 5.2.4.2.2
#if preprocessing directive. 6.8. 6.8.1
if statement. 6.6.4. 6.6.4.1
#ifdef preprocessing directive. 6.8. 6.8.1
#ifndef preprocessing directive. 6.8. 6.8.1
implementation. definition of. 3.9
implementation-defined behavior. 3.10. CL.3
implementation limits. 3.1 I. 5.2.4. annex E.
implicit conversion. 6.2
implicit function declaration. 6.3.2.2
#include preprocessing directive. 5. I. I.?. 6.8.2
inclusive OR assignment operator. I=. 6.3.16.2
inclusive OR operator. I. 6.3.12
incomplete type. 6.1.2.5
increment operator. postfix. ++, 63.2.4
increment operator, prefix, ++. 6.3.3.1
indirection operator. *. 6.3.3.2
inequality operator. ! =. 6.3.9
initialization. 5.1.2. 6.1.2.4. 6.2.2.1, 6.5.7. 6.62
initializer, string literal, 6.2.2. I. 6.5.7
initializer braces. 6.5.7
initial ‘shift state. 5.2.1.2. 7.10.7
input/output, device. 5.1.2.3
input/output header, 7.9
int type, 6.1.2.5, 6.1.3.2, 6.2.1.1. 6.2.1.2. 6.5.2
IN%'-= macro, 5.2.4.2.1
IN!C-MIN macro. 5.2.4.2.1
integer arithmetic functions. 7.10.6
integer character constant. 6.1.3.4
integer constants. 6.1.3.2
integer suflix. 6.1.3.2
integer type. 6.1.2.5
integer type conversion. 6.2.1.1. 6.2.1.2
integral constanr expression. 6.4
integral promotions. 5.1.2.3, 6.2.1.1
integral type. 6.1.2.5
integral type conversion. 6.2.1.3
interactive device. 5.1.2.3. 7.9.3. 7.9.5.3
internal linkage. 6.1.2.2
internal name. 6.1.2
isalnum function. 7.3.1.1
isalpha function. 7.3.1.2
iscntrl tunction. 7.3.1.3
isdigit function. 7.3.1.4
isgraph tunction. 7.3.1.5
islower tunction. 7.3.1.6
IS0 12 17.19X7 Currencies and Funds Representation.

1.3. 7.4.2.1
IS0 646.1983 Invariant Code Set. clause 2.. 5.2.1.1
isprint function, 52.2. 7.3.1.7
ispunct function. 7.3.1.8
isspace function. 7.3.1.9
isupper function, 7.3.1.10

214 index

Annexes ISO/‘IEC 9899 1990 tE,

isxdigit function. 7.3.1.11
irrdic r~pc convenrion. clause 6.
iteration statements. 6.6.5

jmp-buf am\. 7.6
jump statements. 6.6.6

ke>uords. 6.1.1

LBtmpnasn macro, 7.9.1
label name. 6 1.2.1. 6 1 7 3 . ._.C
labeled statements. 6.6.1
labs tunction. 7.10.6.3
lanfuape. clause 6.
larqua~e. future directions. 6.9
Ian_rua_ce syntax summary, annex B.
LC-ALL. 7.4
Lc~coLIxl!E. 7.4
LC-CTYPE. 7.4
LC-MONETARY. 7.4
LC-NUMERIC. 7.4
LC-TIME. 7.4
lconv structure type. 7.4
LDBL- macros. 5.2.4.2.2
ldexp function, 7.5.4.3
ldiv function, 7.10.6.4
ldiv-t typ, 7.10
leading underscore in identifiers. 7.13
left-shift assignment operator. <<=. 6.3.16.2
left-shitt operator. <<. 6.3.7
length function, 7.11.6.3
less-than operator, <. 6.3.8
less-than-or-equal-to operator. <=. 6.3.8
letter. 7.1.1
lexical elements. 5.1.1.2. 6.1
library. 5 I I. I. clause 7.
library. future directions. 7.13
library functions. use of. 7.1.7
library summary. annex D.
Iihrar! term\ 7.1.1
Itmits. em ironmental 5.2.4
limits. numertcal 5 7 4 7 . -.-. .a
Imitt\. tran&uion. 5.2.4.1
limits. h header. Claus -1.. 5.2.4.2.1. 7 I.5
line butlered stream. 7.9.3
line number. 6.8.4
#line preprocessing directive. 6.X.4
line\. s I I 2. 6 x. 7.9.2
Ime\. logical. 5.1.1.2
lines. preprocessing directive. 6.X
I~nkafcs ot identiliers. 6.1.2.2
locale. delinition ot. 3.12
locale-specitic behavior. 3.12. G.-l
locale. h hccrdrr. 7.4
localeconv function. 7.4.2.1

localization. 7.4
localtime function. 7.12.3.4
log function. 7.5.4.4
log10 funcfion. 7.5.4.5
logarithmic tunctions. 7.5.4
lo,@cal AND operator. hb. 6.3.13
IoSical negation operator. ! . 6.3.3.3
logical OR operutor. 1 1. 6.3.14
IoSical source lines. 5.1.1.2
long double suftix. 1 or L. 6.1.3.1
long double type. 6.1.2.1. 6.1 3 I. 6.5 2
long double type conversion. 6.7 I 1. 6.2.1.5
long int type. 6.1.2.5. 6.2.1.2. 65.2
long integer suffix. 1 or L. 6.1.3.2
LONG-MAX macro. 5.2.4.2.1
LONG-MIN macro. 5.2.4.2.1
long jxnp function. 7.6.2.1
low-order bit, 3.4
Ivalue. 6.2.2.1. 6.3.1, 6.3.2.4. 6.3.3.1. 6.3.16

macro function vs. definition, 7.1.7
macro name definition, 5.2.4.1
macro names, predefined. 6.8.8
macro, redefinition of, 6.8.3
macro replacement. 6.8.3
main function, 5.1.2.2.1 5.1.2.2.3
malloc function, 7.1033
math. h header, 7.5
MB~CUR~MAX, 7.10
MB-LEN-MIU, 5.2.4.2.1
mblen function, 7.10.7.1
mbstowcs function. 7.10.8.1
mbtowc function. 7.10.7.2
member-access operators. . and ->. 6.3.2.3
memchr function, 7.11.5.1
memcmp function. 7.11.4.1
memcpy function. 7.11.2.1
memrnove function, 7.11.2.2
memory management functions. 7.10.3
memset function. 7.11.6.1
minus operator. unary. -, 6.3.3.3
mktime tunction. 7.12.2.3
modf function. 7.5.4.6
moditiable Ivalue. 6.2.2.1
modulus tunction. 7.5.4.6
multibyte characters, 5.2.1.2. 6.1.3 4. 7. IO 7. 7. IO X
multibyte functions, 7.10.7. 7. IO.8
multiplication assignment operator. *=. 6.3.16.2
multiplication operator, *. 6.3.5
multiplicative expressions. 6.3.5

name. tile, 7.9.3
name spaces of identifiers. 6.1.2.3
NDEBUG macro, 7.2
nearest-integer functions. 7.5.6

.

Index 215

ISO/lEC 9899: 1990 (E)

new-line character, 5.1.1.2. 5.2.1. 6.1, 6.8. 6.8.4
new-line escape sequence. \n, 5.2.2. 6.1.3.4
nongraphic characters, 5.2.2. 6.1.3.4
nonlocal jumps header. 7.6
not-equal-to operator, ! =, 6.3.9
null character padding of binary streams, 7.9.2
null character, \O. 5.2.1. 6.1.3.4, 6.1.4
NULL macro, 7.1.6
null pointer, 6.2.2.3
null pointer constant, 6.2.2.3
null preprocessing directive, 6.8.7
null statement. 6.6.3
number, floating-point, 6.1.2.5
numerical limits. 5.2.4.2

object, definition of. 3.14
object type, 6.1.2.5
obsolescence, Introduction. 6.9, 7.13
octal constant, 6.1.3.2
octal digit, 6.1.3.2, 6.1.3 4
octal escape sequence, 6.1.3.4
of fsetof macro, 7.1.6
operand, 6.1.5, 6.3
operating system, 5.1.2.1, 7.10.4.5
operator, unary, 6.3.3
operators, 6.1.5, 6.3
OR assignment operator, exclusive, A=, 6.3.16.2
OR assignment operator, inclusive, I=, 6.3.16.2
OR operator, exclusive, *, 6.3.11
OR operator. inclusive, 1. 6.3.12
OR operator. logical. 1 I. 6.3.14
order of memory allocation. 7.10.3
order of evaluation of expression, 6.3
ordinary identifier name space, 6.1.2.3

padding. null character. 7.9.2
parameter. ellipsis. , . . . , 6.5.4.3
parameter. function. 6.3.2.2
parameter. main function. 5.1.2.2.1
parameter. 3.15
parameter type list. 6.5.4.3
parameters. program, 5.1.2.2.1
parentheses punctuator. () . 6.1.6. 6.5 3 3
parenthesized expression. 6.3.1
perror function. 7.9.10.4
physical source lines, 5.1.1.2
plus operator. unary. +. 6.3.3.3
pointer. null. 6.2.2.3
pointer declarator. 6.5.4.1
pointer opr ator. ->. 6.3.2.3
pointer to function returning type. 6.3.2.2
pointer type. 6.1.2.5
pointer type conversion. 6.22. I. 6.2.2.3
portability of implementations. clause 4.
position indicator. tile. 7.9.3

Annexes

postfix decrement operator. --, 6.3.2.4
postfix expressions. 6.3.2
postfix increment operator. ++. 6.3.2.4
pow function. 7.5.5.1
power functions. 7.5.5
#pragma preprocessing directive. 6.8.6
precedence of expression operators. 6.3
precedence of syntax rules. 5.1.1.2
predefined macro names. 6.8.8
prefix decrement operator. --. 6.3.3.1
prefix increment operator, ++. 6.3.3.1
preprocessing concatenation. 5 I. 1.7, 6.8.3.3
preprocessing directives. 5. I. 1.2. 6.8
preprocessing numbers, 6.1. 6.1.8
preprocessing tokens, 5.1.1.1. 6.1. 6.8
primary expressions, 6.3.1
printf function, 7.9.6.3
printing characters. 5.22. 7.3, 7.3.1.7
program, conforming. clause 4.
program. strictly conforming. clause 4.
program diagnostics. 7.2.1
program execution, 5.1.2.3
program file, 5.1.1.1
program image, 5.1.1.2
program name, argv [0] , 5.1.2.2.1
program parameters, 5.1.2.2.1
program startup, 5.1.2, 5.1.2.1, 5.1.2.2.1
program structure, 5.1.1.1
program termination, 5.1.2, 5.1.2.1, 5.1.2.2.3, 5.1.2.3
promotions, default argument. 6.3.2.2
promotions. integral, 5.1.2.3. 6.2.1.1
prototype. function. 6.1.2.1. 6.3.2.2, 6.5.4.3, 6.7.1
pseudo-random sequence functions, 7.10.2
ptrdiff-t type, 7.1.6
punctuators. 6.1.6
putt function, 7.9.7.8
putchar function. 7.9.7.9
puts function. 7.9.7.10

qsort function. 7.10.5.2
qualitied types. 6.1.2.5
qualitied version. 6.1.2.5

raise tunction. 7.7.2.1
rand Iunction. 7.10.2.1
RAND-MAX macro. 7.10. 7.10.2.1
range error. 7.5.1
reallot function. 7.10.3.4
rccur\ive function call. 6.3.2.2
redetinition ot macro. 6.8.3
reentrancy. 5.1.2.3. 5.2.3
referenced type. 6.1.2.5
register storage-class specifier, 6.5.1
relational expressions, 6.3.8
reliability of data. interrupted, 5.1.2.3

216 Index

Annexes ISO/IEC 9899: 1990 (E)

remainder assignment operator. %=. 6.3.16.2
remainder operator, 8. 6.3.5
remove function. 7.9.4.1
rename function, 7.9.4.2
restore calling environment function. 7.6.2.1
reserved identifiers, 7.1.3
return statement. 6.6.6, 6.6.6.4
rewind function. 7.9.9.5
right-shift assignment operator. >>=. 6.3.16.2
right-shift operator. >>. 6.3.7
rvalue, 6.2.2.1

save calling environment function. 7.6.1.1
scalar type, 6.1.2.5
scanf function, 7.9.6.4
SCE?LR MAX macro. 5.2.4.2.1
SCki?&-MIN macro, 5.2.4.2.1
scope oiidentifiers, 6.1.2.1
search functions. 7.10.5.1, 7.11.5
SEEK-CUR macro. 7.9.1
SEEK-END macro, 7.9.1
SEEK SET macro. 7.9.1
selectk statements, 6.6.4
semicolon punctuator, ;, 6.1.6. 6.5, 6.6.3
sequence points, 5.1.2.3, 6.3. 6.6, annex C.
setbuf function. 7.9.5.5
set jmp macro, 7.6.1.1
set jmp . h header, 7.6
setlocale function. 7.4.1.1
setvbuf function. 7.9.5.6
shift expressions. 6.3.7
shift states. 5.2.1.2. 7.10.7
short int type, 6.1.2.5, 6.5.2
short int type conversion. 6.2.1.1
SHRT-MAX macro. 5.2.4.2.1
SI1RT_MIN macro. 5.2.4.2.1
side effects. 5.1.2.3. 6.3
sig-atomic-t type. 7.7
SIG-DFL macro. 7.7
SIG-ERR macro. 7.7
SIG-IGN macro. 7.7
SIGABRT macro. 7.7. 7.10.4. I
SIGFPE macro. 7.7
SIGILL macro. 7.7
SIGINT macro. 7.7
SIGSEGV macro, 7.7
SIGTERM macro. 7.7
signal function. 7.7.1.1
signal handler. 5 1.X. 5 2.3. 7.7.1.1
signal. h header. 7.7
signals. 5 1.3 3. 5 2.3. 7.7
signed char. 6.1.2.5
signed char type conversion. 6.2.1.1
signed integer types. 6.1.2.5. 6.1.3 2. 6.3.1.2
signed type. 6.1.2.5. 6.5.2

significand part. floating constant. 6.1.3.1
simple assignment operator, =, 6.3.16.1
sin function, 7.5.2.6
single-precision arithmetic. 5.1.2.3
sinh function. 7.5.3.2
size-t type, 7.1.6
sizeof operator. 6.3.3.4
sort function. 7.10.5.2
source character set. 5.2.1
source file inclusion, 6.8.2
source files. 5.1.1.1
source text, 5.1.1.2.
space character, 5.1.1.2. 5.2.1, 6.1
sprintf function, 7.9.6.5
sqrt function, 7.5.5.2
stand function, 7.10.2.2
sscanf function, 7.9.6.6
standard streams, 7.9.1, 7.9.3
standard header, float. h, clause 4.. 5.2.4.2.2, 7.1.5
standard header, limits. h, clause 4.. 5.2.4.2.1, 7.1.5
standard header, stdarg . h, clause 4.. 7.8
standard header, stddef . h, clause 4.. 7.1.6
standard headers, 7.1.2
state-dependent encoding, 5.2.1.2, 7.10.7
statements, 6.6
static storage duration, 6.1.2.4
static storageclass specifier,

3.1.2.2, 6.1.2.4, 65.1, 6.7
stdarg . h header, clause 4., 7.8
stddef . h header, clause 4.. 7.1.6
stderr file, 7.9.1, 7.9.3
stdin file, 7.9.1, 7.9.3
stdio . h header, 7.9
stdlib. h header, 7.10
stdout file, 7.9.1, 7.9.3
storage duration. 6.1.2.4
storage-class specifier, 6.5.1
strcat function, 7.11.3.2
strchr function, 7.11.5.2
strcmp function, 7.11.4.2
strcoll function. 7.11.4.3
strcpy function. 7.11.2.3
strcspn function. 7.11.5.3
stream. fully buffered. 7.9.3
stream. line buffered, 7.9.3
stream. standard error, stderr. 7.9.1, 7.9.3
stream. standard input. stdin. 7.9.1, 7.9.3
stream. standard output. stdout, 7.9.1, 7.9.3
stream. unbuffered, 7.9.3
streams. 7.9.2
strerror function. 7.11.6.2
strftime function, 7.12.3.5
strictly conforming program, clause 4.
string. 7.1.1
string conversion functions, 7.10.1

Index 217

ISO/IEC 9899: 1990 (E)

string handling header, 7.11 ’
string length, 7.1.1. 7.1 1.6.3
string literal. 5.1.1.2. 52.1. 6.1.4. 6.3.1. 6 5 7
string. h header. 7.11
sttlen function. 7.11.6.3
strncat function. 7.11.3.2
strnanp function. 7.11.4.4
strncpy function. 7.11.2.4
strpbrk function, 7.11.5.4
strrchr function. 7.11.5.5
strspn function. 7.11.5.6
strstr function, 7.11.5.7
strtod function. 7.10.1.4
strtok function. 7.11.5.8
strtol function. 7.10.1.5
strtoul function. 7.10.1.6
structure/union arrow operator. ->, 6.3.2.3
structure/union content. 6.5.2.3
structure/union dot operator. . . 6.3.2.3
structure/union member name space. 6.1.2.3
structure/union specifiers. 6.5.2.1
structure/union tag. 6.5.2.3
structure/union type. 6.1.2.5. 6.5.2.1
strxfrm function. 7.11.4.5
subtraction assignment operator, -=. 6.3.16.2
subtraction operator, -, 6.3.6
suffix, floating constant, 6.1.3.1
suffix, integer constant, 6.1.3.2
switch body. 6.6.4.2
switch case label. 6.6. I. 6.6.4.2
switch default label. 6.6. I, 6.6.4.2
switch statement. 6 6.4. 6.6.4.2
syntactic categories, clause 6.
syntax notation. clause 6.
syntax rules. precedence of. 5.1.1.2
syntax summary. language. annex B.
system function. 7.10.4.5

tab characters. S.2.1
tabs. white space. 6.1
tag. enumeration. 6.5.2.3
tag. structure/union. 6.5.2.3
tag name space. 6.1.2.3
tan tunction. 7.5.2.7
tanh tunction. 7.5.3.3
tentative definitions. 6.7.2
text stream. 7.9.2
time components. 7.12.1
time conversion functions. 7.12.3
time tunction. 7.12.2.4
time manipulation functions. 7.12.2
time. h header. 7.12
time-t type. 7.12.1
tm structure type. 7.12.1
TMP-MAX macro. 7.9.1

Annexes

tmpfile function. 7.9.4.3
tmpnam function. 7.9.4.4
tokens. 5.1.1.2. 6.1. 6.8
tolower function. 7.3.2.1
toupper function. 7.3.2.2
translation environment. 5.1.1
translation limits. S.2.4.1
translation phases. 5.1.1.2
translation unit. 5.1.1.1. 6 7
trigonometric functions. 7.5.2
trigraph sequences. 5. I. 1.2. 5.2.1.1
type. character. 6.1.2.5. 6.1.2.1. 6.5.7
type. compatible. 6.1.2.6. 6.5.2. 6.5.3. 65.4
type. composite. 6.1.2.6
type. const-qualitied. 6.1.2.5. 65.3
type, function. 6.1.2.5
type. incomplete. 6.1.2.5
type, object. 6.1.2.5
type. qualilied. 6.1.2.5
type. unqualitied. 6.1.2.5
type. volatile-qualified. 6.1.2.5. 6.5.3
type category. 6.1.2.5
type conversions. 6.2
type definitions. 6.5.6
type names. 6.5.5
type speciliers, 6.5.2
type qualifiers, 6.5.3
typedef specifier. 6.51, 65.2. 6.5.6
types. 6.1.2.5

UCHAR_MAx macro. 5.2.4.2.1
UINT MAX macro. 5.2.4.2.1
ULONE MAX macro. 5.2.4.2.1
unary anthmetic operators. 6.3.3.3
unary expressions. 6.3.3
unary minus operator. -. 6.3.3.3
unary operators. 6.3.3
unary plus operator. +. 6.3.3.3
unbuffered stream. 7.9.3
#undef preprocessing directive. 6.8. 6.8.3. 7 I 7
undetined behavior. 3.16. G.2
underscore. leading. in identifiers. 7.1.3
ungetc tunction. 7.9.7.11
unmn initialization. 6.5.7
union tag. 6.5.2.3
union type specitier. 6.1.2.5. 6.5.2. 6.5.2.1
unquulifcd type. 6.1.2.5
unqualitied \crsion. 6.1.2-S
unsigned integer suffix. u or U. 6.1.3.2
unsigned integer type: 6.1.2.5. 6. I.32
unsigned type conversion. 6.2.1.2
unsigned type. 6.1.2-S. 62.12. 6.52
unspecified behavior. 3.17. Cl.1
USHRT MAX macro. 5.2.4.2-l
usual arithmetic conversions, 6.2.1.5

218 Index

Annexes ISO/lEC 0x90. 1990 t E /

va arg macro. 7.8.1.2
vaend macro. 7.8.1.3
vaIli& type. 7.8
va start macro, 7.8.1.1
var;ble arguments header. 7.8
vertical-tab character. 5.2.1. 6.1
vertical-tab escape sequence. \v. 52.2. 6.1.3.4
vfprintf function. 7.9.6.7
visibility of identitiers. 6.1.2.1
void expression. 6.2.2.2
void function parameter. 6.5.4.3
void type. 6.1.2.5. 6.5 2
void type conversion. 6.2.2.2
volatile storage. 5.1.2.3
volatile-qualitied type. 6.1.2.5. 6.5.3
volatile type qualifier. 6.5.3
vprintf function. 7.9.6.8
vsprintf function. 7.9.6.9

wchar-t type, 6.1.3.4. 6 14. 6.5.7. 7.1.6. 7.10
wcstombs function. 7.10.8.2
wctomb function, 7.10.7.3
while statement, 6.6.5. 6.651
white space. 5.1.1.2. 6.1, 6.8, 7.3.1.9
wide character. 6.1.3.4
wide character constant, 6.1.3.4
wide string literal, 5.1.1.2, 6.1.4

Index 219

.

