
Paxos

A Preprint

Victor Yodaiken∗

October 20, 2019

Abstract
The Paxos protocol for distributed consensus.
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1 Introduction

Paxos[1] is notoriously hard to understand because of the number of moving parts and the confusing de-
scriptions of the algorithm, but it is fundamentally pretty simple. The problem Paxos is intended to solve
is ensuring that a collection of network nodes (sites) that communicate only by message can come to a
consensus about some value even though some messages may be lost or delayed and nodes can fail. A trivial
“brute force” algorithm works well in these kinds of networks with a single node that can propose values, but
if that node fails, the system fails. The original Paxos algorithm (abandoned 3/4 through the “Paxos Made
Simple” paper) has a multiple “proposers” that compete for majority consensus on some value. Normally,
these kinds of algorithms are considered “safe” if at most one proposer can win, but the ingenious innovation
in Original Paxos allows any number of proposers to win as long as the proposers come to a consensus about
the proposed value.

2 Original Paxos Safe

The network model includes a set of network nodes and a set of messages that pass between nodes. Messages
can be lost or delayed, but if site n has received message m then some node n′ must have transmitted m
in a previous state (no spurious messages). Suppose we have a set A of acceptor nodes and a non-empty,
non-intersecting set P of proposers. A proposal is a triple m = (p, q, v) where p ∈ P is the proposer, q is
the sequence number and v is the value. Sequence numbers are partitioned among proposers so that no
two proposers ever use the same sequence number. Proposers go through two phases: prepare and then
propose. In the prepare phase the proposer asks acceptors to approve its sequence number. If an acceptor
has approved sequence number q it must reject any later proposals with sequence numbers less than q. When
an acceptor approves a sequence number, it must send the proposer a copy of the highest numbered proposal
it has approved. Call this the “legacy” proposal. Once the proposer has received approval messages from a
majority of acceptors for its sequence number it can start sending out a proposal with the same sequence
number. If the proposer has received any legacy proposals, it is required to use the value from the highest
numbered one as its proposal value. If no legacy proposals were received, the proposer is free to use an
arbitrary proposal value. The proposer wins if it gets a majority to approve its proposal.
Suppose m0 = (p0, q0, v0) has the least sequence number of any winning proposal and let X be the set of
proposals with sequence numbers greater than q0 that have been approved by at least one acceptor. X plus
m0 includes all winning proposals and possibly any number of incomplete ones. If mi = (pi, qi, vi) ∈ X,
a majority of acceptors must have approved qi, otherwise the proposal could never have been sent. Since
majority sets must intersect, there must be some a which approved qi and also approved m0. If a had
approved qi before it approved m0, since q0 < qi it would have rejected m0. So a must have approved m0

∗©Victor Yodaiken 2019. Institute for Breakthrough Twitter Treatises, Austin TX.



A preprint - October 20, 2019

before it approved qi, and so a must have returned m0 or a better proposal (which must be in X) to pi as
a legacy. It follows that mi uses the legacy value from some proposal mj ∈ X or from m0. This is true
for every proposal in X. Associate each element of mi ∈ X with the proposal mj which determined its
proposal value. This legacy proposal must be in X or must be equal to m0. A trace, (mi inherits mj . . .
inherits ...) cannot repeat elements (or else a proposer would have had to re-enter the prepare phase with
the same sequence number) and X is finite. So every trace must terminate with m0. Therefore all the values
of proposals in X are equal to v0. QED.
Note that the winning proposal with the lowest sequence number can even change. Suppose there are 3
acceptors, x,y,and z, and p1 with sequence number 1 has obtained majority approval from 2 for its sequence
number and obtained approval from acceptor x for its proposal. Then p2 with sequence number 2 gets
majority acceptance for sequence number 2 and from x and y for its proposal. At this point the lowest
sequence numbered approved proposal has sequence number 2. But p1 can now move forward and get
approval from z and now its proposal, with sequence number 1, has also been approved. The value does not
change.

3 Paxos live

The algorithm, so far, will block if the proposer with the highest sequence number gets approval for its
sequence number from a majority of acceptors and then crashes before completing the process. No other
proposer can then pass the first phase. To fix this, Original Paxos allows stuck proposers to abandon their
current effort, discarding all approvals and legacy proposals, increase the sequence number, and try again.
As long as sequence numbers are partitioned so that proposers never reuse sequence numbers and no two
proposers ever use the same number, a blocked proposer keeps increasing its sequence number until it can
proceed. Unfortunately, as is noted on page 6 of the “Paxos Made Simple” paper, now we have a possible
“overtaking” problem where p1 is making progress until p2 increases its sequence number and blocks p1,
forcing p1 to start over with a higher number and so on forever. It is pretty easy to show this problem in a
simulation.
The “livelock” problem is addressed in “Paxos Made Simple” by suggesting a single proposer be selected
using timeouts! This is an odd solution because it makes most of the algorithm completely useless: there
is no point in having a prepare phase and mechanisms for proposal inheritance that never happens if there
is only a single proposer. It is also odd because the whole premise of Original Paxos is that the network is
completely asynchronous. Once we admit that networks exist in real-time, it might be better to fix Original
Paxos by imposing a staggered timeout on increasing the sequence number because failure of the highest
numbered original proposal should be a rare event.
On the other hand, if we have a single proposer, then the most trivial algorithm is safe and also live (given
some liveness assumption about the network, such that messages are delivered after some number of tries).
The trivial algorithm just has the single proposer send its proposal until a majority of acceptors agree. There
doesn’t seem to be any advantage for single proposer Paxos over the trivial algorithm. The trivial algorithm
can be made to survive failures of the single proposer in the obvious way, by having timeouts and election of
a new proposer. If we are going to need this mechanism in Single Proposer Paxos, then using Paxos rather
than the trivial algorithm would be a strange choice.

4 Next week

The next part will show how to extract the argument above from Paxos and how to use state machines to
represent the algorithm.
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