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Abstract

Synchronized clocks areinteresting because they can be used to

improve performance of a distributed system by reducing com-

munication. Since they have only recently become a reality in

distributed systems, their use in distributed algorithms has

received relatively little attention. This paper discusses a number

of dktributed algorithms that make use of synchronized clocks

and analyzes how clocks are used in these algorithms.

1. Introduction
Synchronized clocks are quickly becoming a reality in dktnbuted

systems. For example, the network time protocol NTP [14]

synchronizes clocks of nodes on geographically distributed net-

works. It does thk at low cost and provides clocks that are

synchronized to within a few milliseconds of one another. NTP is

running on the intemet today and is used to synchronize clocks of

nodes throughout the United States, Canada, and various places in

Europe.

Synchronized clocks are interesting because they can be used to

improve the performance of d~tributed algorithms. They make it

possible to replace communication with local computation. In-

stead of node N asking auother node M whether some property

holds, it can deduce the answer based on some information about

M from the past together with the current time on N’s clock.

Since the practical availability of synchronized clocks is a recent

phenomenon, their use in distributed algorithms has not received

much attention. This paper describes the role of synchronized
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clocks in several distributed algorithms. The focus is on practical

algorithms that either are in use in systems today or that will be

used in the near fisture. The algorithms differ in their

synchronization requirements; some require clocks synchronized

to within a few minutes of one another, while others require closer

synchronization. All of them have much less stringent require-

ments on synchronization than current clock algorithms provide.

There is a considerable literature on clock synchronization

algorithms [21]. It is not the goal of thk paper to explain how

clock synchronization works; instead the paper assumes the

clocks exist and discusses how to use them. The abWy of NTP to

synchronize clocks in the intemet with small clock skews and low

cost is taken as evidence that relying on synchronized clocks in

distributed algorithms is a reasonable thing to do, both in local

area networks and geographically distributed networks.

Clock synchronization algorithms are based on probabilistic as-

sumptions about clock rate and message delay. Therefore, clocks

are only synchronized with some (very high) probability. Since

clock synchronization can fail occasionally, it is most desirable

for algorithms to depend on synchronization for performance but

not for correctness. Depending on synchronization for perfor-

mance is reasonable; since clocks will be synchronized most of

the time, performance will only degrade rarely. Some of the

algorithms to be discussed depend on synchronization only for

performance, but others depend on it for correctness. Depending

on synchronization for correctness is more problematic but it is

sometimes appropriate. In practical systems, performance is very

important. Furthermore, the correctness of an algorithm may

depend on the non-occumene of other low-probability events, so

that having it also depend on synchronized clocks has little imp-

act. Also there may be recovery mechanisms at a higher level to

compensate for failures of the algorithm.

The remainder of the paper is organized as follows. It begins in

Section 2 with a few remarks about synchronized clocks. Then it

describes several distributed algorithms that use synchronized

clocks. It concludes with a discussion of how to incorporate

synchronized clocks into new algorithms.
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2. Synchronized Clocks
Clock synchronization algorithms synchronize clocks with some

skew S: They guarantee that if cl and C2 are the clocks at two

nodes of a network then at any instant the time at cl dfifers from

the time at C2 by no more than E. As mentioned, the synchroniza-

tion property cannot be provided absolutely, but only with some

very high probability.

It is worth noting that practical clock synchronization algorithms

must provide efficient engineering solutions to a number of

problems, Some of these are tectilcal problems, e.g., how to

avoid being miskci about the time when a message containing a

time vahre is delayed in the network. The algorithms that exist

today are robust in the face of problems such as network conges-

tion and links with widely vmying delays. They are less likely to

be robust, however, in the face of operator and software errors.

Most systems allow a manual override to set the clock but such an

override clearly allows the clock to be set incorrectly, i.e., in a

way that violates the clock skew assumption. Clock synchroniza-

tion algorithms need to be thought of as part of a total system, and

care must be taken to limit the damage caused by operator error.

Furthermore, the algorithm must accomplish its task without con-

suming much of the bandwidth of the network and without requir-

ing that every node be equipped with expensive devices.

A property closely related to synchronized clocks is synchronized

clock rates. Several of the algorithms to be described depend only

on clock rates being synchronized rather than on clocks being

synchronized. This means that the clocks at the different nodes

run at approximately the same rates although the times on these

clocks may be different. The interest in clock rates dates from the

time when clock synchronization was thought to be practically

unattainable. Clock rates were assumed to be “naturally”

synchronized so that no algorithm was required to keep them

synchronized; in fact, to ensure that rates are truly synchronized

requires algorithms similar to clock synchronization algorithms.

The focus on algorithms that depend only on synchronized rates

will likely diminish once synchronized clocks are available.

Nevertheless, it is interesting to understand what enables an algo-

rithm to depend on rates instead of tim~ thk question is discussed

in Section 8.

Clock synchronization algorithms typically synchronize clocks

with “real” time, i.e., at any moment a node’s clock differs from

real time by no more than s/2. At the root of such algorithms is a

dependence on devices that sample universal time; such devices

are attached to time servers, and the algorithm spreads the infor-

mation about the current time from the servers to other nodes in

the network. Having clocks close to real time is obviously irnpor-

tanfi for example, the “time last modified” for files ought to be

close to the time the modification actually occurred, or users may

notice strsnge behavior. Also, the presence of an algorithm that

synchronizes nodes’ clocks to real time obviates the need for

operators to set the clock manually.

None of the algorithms to be discussed depends on the clock times

being close to real time. They do depend on clock rates being

close to real clock rates, however. Thk is because each algorithm

makes use of time intervals that have been chosen based on

assumptions about how users of the system behave, e.g., what

kinds of delays a user is willing to tolerate. If internal clock rates

aren’t close to real clock rates these assumptions will not be

honored.

3. At-most-once Messages
The first example of the use of synchronized clocks is the SCMP

protocol [12], which guarantees at-most-once delivery of mes-

sages. Many networks do not guarantee at-most-once delivery

instead they may duplicate messages and furthermore duplicates

may arrive very late. In addition, since networks may lose mes-

sages, higher levels of a system re-send them, which may also

lead to duplicates.

Implementing at-most-once semantics is typically done by having

each message receiver maintain a table containing information

about “active” senders that have communicated with the receiver

recently. When a message arrives, if there is information about

the sender in the table it is used to determine whether or not the

message is a duplicate. If there is no information, there are two

choices: either accept the message or reject it. If the message is

accepted, there is a chance of accepting a duplicate. Thk chamce

can be made arbitrarily small by keeping information about

senders long enough, but it is difficult to determine how long to

keep thk information in the presence of sender retransmission and

networks with probabilistic delay.

The alternative of rejecting the message guarantees that no dupli-

cates will ever be accepted. However, it gives rise to a problem.

When a message is sent, we want to be reasonably certain that the

receiver will accept it. Therefore we need to know that the

receiver has information about the sender in its table. If it is

unlikely to have such information, e.g., because thk is the first

time the sender has communicated with it in a while, then it is

necessary to set up the information before sending the message.

Thk can be done by means of a handshake in which a pair of

messages is exchanged between the sender and receiver in ad-

vance of the at-most-once message. If the sender then sends

many messages over the connection established by the handshake,

the cost of the handshake is amortized across all of them. If there

are only a few messages, the overhead is high relative to useful

work. In the worst case, the sender transmits only one message

per handshake. Yet this case may be quite common; it cor-

responds to a client that performs a single operation at each of

many servers.

The SCMP protocol avoids the handshake between the sender and

receiver by using synchronized clocks. The idea is that the

receiver remembers all “recent” communications. If a message

from a particular sender is “recent,” the receiver will be able to

compare it with the stored information and decide accurately

whether the message is a duplicate, If the message horn the

sender is “old,” it will be tagged as a duplicate even though it may

not be, but thk case is very unlikely. Thus the system will never

accept a duplicate but it may occasionally reject a non-duplicate.

For the scheme to work, receivers need to know whether a mes-

sage is “recent.” When a node sends a message, it timestarnps the

message with the current time of its clock. When the message

arrives at the receiver, it is considered recent if its timestamp is
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later than the receiver’s local time minus the message l~eiime
interval p; otherwise it is old. The message lifetime interval must

be big enough (e.g., ten minutes) so that ahnost all messages will

arrive within p time units of when they were sen~ it is much

larger than f,. The characteristics of p are discussed further

in [12].

The protocol works as follows. Every module G has a current

time,G.time; this is read from the clock belonging to its node.

Every message m contains a timestatnp, m.t~ thk is G.time of the

sending module at the time m is created. Even though a particular

message may be duplicated either by the network or by the

software that carries out a higher-level protocol, all copies of the

message contain the same m.ts. Each message also contains a

connection identifier, m.corm; this is selected by the sender with-

out consultation with the receiver, unlike other protocols, e.g,,

TCP [19]. The connection id must be distinct from the ids used in

other senders, e.g., at other nodes; in addition, if the sender has

several outstanding messages to the same receiver, it should use a

separate connection id for each.1 Every message sent to a par-

ticular receiver and containing a particular connection id should

contain a distinct timestamp, thus the connection id and the titnes-

tsmp together constitute a unique message id with respect to that

receiver.

Each receiver maintains a corwwction table, G.CT, that maps

connection ids to connection information including the timestamp

of the last message accepted on that connection. Not all connec-

tions have an entry in G.CT. G is free to remove an entry for

connection C from its connection table provided G.CT[C] ,ts <

G.time - p - S; such an entry is considered to be “old.” (Recall

that p is the message lifetime interval.) A receiver also maintains

an upper bound, G.upper, on the timestamps that have been

removed from the table. Since only old tirnestamps are removed

from the table, G.upper < G.time - p -E.

The algorithm works by determining a per-connection bound that

distinguishes “new” from “old,” or potentially duplicate, mes-

sages, and comparing the timestamp of the newly arrived message

with that bound. If the message’s connection has an entry in the

table G. CT, the bound is the tirnestsmp of the most recent

previously accepted message. If there is no table entry, the global

bound G.upper is used. G.upper is an appropriate bound because

if there is no information for the connection in G.CT, this means

the last message on the connection (if any) contained a timestamp

t < G.upper. Therefore, if a message arrives whose timestamp is

later than this, it must be a new message. Since G.uppers G.time

- p - & there is little chance of incorrectly flagging a message as a

duplicate, provided p is large enough. Messages with timestatnps

less than the bound are discarded; if a message is accepted, its

timestamp is stored in the G.CT entry for its connection.

Receivers that survive crashes need a way to determine whether a

message that arrives after crash recovery is a duplicate of a

message that amived before the crash. SMTP uses time to solve

‘Thus in a system supporting tightweight threads within processes a connection id

might be a triple umcte-id, process-id, thread-id>, where the node-id is a unique
name of the sender’s node, the process-id identiiks the process wdun the node, and

the thread-id identitks the thread within the process.

this problem also. It maintains on stable storage [8] a timestatnp

G.latest that is larger than the timestarnps of all messages ac-

cepted so far. A message that arrives too early (i.e., its timestamp

is greater than G latest) is discarded or delayed. After a crash,

G.upper is inidalized to G.latest. This will cause al} potential
duplicates to be rejected because only messages with timestamps

less than this new G.upper could have been accepted before the

crash. G.latest is maintained by writing G.time + J3 to stable

storage periodically, G.latest is the most recent value written to

stable storage. ~ is some increment (e.g., a few seconds) that is

large enough so that stable storage isn’t written often, but small

enough so that not many messages must be rejected after a crash.

For many persistent servers, G.latest can simply be written to

stable storage as part of the records that are being written there

anyway to record information about the server’s persistent state.

Synchronized clocks allow the protocol to establish a system-wide

notion of “recent.” Clocks are used to avoid communication (to

establish a connection) and to save storage at receivers (only

timestsmps of recent messages need be saved). Timestamps iden-

tify messages that have already arrived, The identification is only

approximate, since a single timestarnp G.upper stands for all

earlier messages, and therefore sometimes a message that is not a

duplicate will be rejected.

If clocks get out of synch, there is no danger of a duplicate

message being accepted, but recent messages may be flagged as

duplicates. If a node’s clock is slow, its messages are more Kkely

to be flagged as duplicates by other modules; if its clock is fast, it

is more liiely to flag messages from other modules as duplicates.

The algorithm does depend on the values stored for G.latest beiig

monotonic, but this is easy to guarantee in software each time a

new value for G.latest is written to stable storage.

4. Authentication Tickets in Kerberos
Thenext example is taken from the Kerberos system [22]. Ker-

beros provides a means for modules to communicate using secure,

authenticated connections. It makes use of private keys using the

DES encryption technique [15], and is based on the Needham and

Schroeder authentication protocol [16]. Systems that use Ker-

beros make use of authenticated connections between every

client-server pair. Kerberos uses synchronized clocks in two

ways: to limit the use of psrticuhw keys, and to help servers

detect replayed messages.

Every communication between a particular client C and server S

is controlled by a ticket. The client obtains a ticket by applying to

the ticket granting service, TGS. If the client is authorized to use

S, the TGS gives it a ticket TC ~ for S and also a secret “session”

key, Kc ~, that can be used dtt~kg future communication between

C and S’, The message from the TGS to the client contairtktg Tc,~

and Kc ~ is encrypted using C‘s private key; tMs ensures both that

the me&age really comes from the TGS (since only the TGS and

C know C’s private key) and also that the key cannot be stolen by

an intruder that intercep~ the message. When the client receives

this message, it cart decrypt it to obtain the key and the ticket.

C sends the ticket to S every time it communicates with S. The
ticket Tc ~ identifies C and S and atso contains dte 5eSSk3nkey
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K. The ticket is encrypted using S‘s private key (again to

pr%ent forgery and theft~ S can decrypt the ticket to obtain the

key. Thus both (and only) C and S know the session key and

therefore they can use it to exchange private information.

Since the ticket is what allows C to talk to S, its use must be

controlled. For example, suppose C mm at a public workstation

and the ticket was obtained on behalf of some person who was

using that workstation. If that person leaves the workstation

without logging out, someone else could obtain access to his or

her tickets. Therefore, each ticket also contains an expiration

time, E, a server S will only accept communications from C using

ticket Tcs provided the expiration time it contains is less than the

server’s ~lock - S.

Thk use of synchronized clocks saves a communication between

S and TGS. Whhout synchronized clocks, S could ask the TGS

whether a ticket were still valid and the TGS could determine

validhy by comparing the expiration time of the ticket with its

local clock. In doing the test at S, we rely on the time at S’s clock

being a close approximation to the time at the TGS’S clock.

The correctness condition for the expiration time is: S must not

use the ticket after it expires at the TGS. Therefore, correctness

will fail if S’s clock is slow (or the TGS’s clock is fast). But, S‘s

clock must be very slow for thk to be a problem. The liietime of

a ticket is typically much larger than E. If S‘s clock is just a little

slow, it doesn’t matter at all. Furthermore, the problems arising

from using a ticket a little too long are less than those arising from

other threats, such as tickets being stolen at unattended worksta-

tions.

One point that is interesting about this use of synchronized clocks

is the following. A system like Kerberos is designed to permit

secure communication in the face of various threats such as users

trying to steal keys or trick the system into telling them about

keys. To base a system like Kerberos on synchronized clocks

requires that the clock synchronization algorithm be secure

against similar threats. For example, if it were possible for a

malicious user to “spoof” the synchronization algorithm in a way

that causes S‘s clock to become very slow, tickets could be used

long after they should have expired.

The second use of clocks in Kerberos, to avoid replays, makes use

of authenticators. An authenticator is basically just a timestarnp

that has been encrypted. The timestamp is produced by the client

reading its clock, the client then encrypts it by using the session

key Kc ~. Since Kcs is known only to C and S, it is not possible
(with ;ery high pr~bability) for an intruder to create a valid

authenticator on its own, instead all an intruder can do is to re-use

an authenticator. Messages containing old authenticators are dis-

carded. If desired, a server can in addition retain the timestamps

of all recent messages and discard any new messages that contain

these tirnestarnps.

The use of authenticators is similar to what occurs in the at-most-

once message protocol. However, at-most-once delivery is not

the point of the protocol. For example, if the client does not

receive a reply to a message, it is free to send it again with a

different authenticator.

If clocks get out of synch, no harm will occur if the server is

maintaining a list of current messages otherwise, if the server’s

clock is slow, it might accept a replay of an earlier message. As

was the case with the at-most-once protocol, clocks are used to

reduce storage at servers (only timestamps of current messages

need be saved) and avoid communication (checking with a client

about the status of a newly received message).

5. Cache Consistency
The next example concerns systems in which servers provide

persistent storage for objects and programs that use those objects

run at client workstations. To provide reasonable response time to

clients, copies of persistent objects are cached at the workstations

so that clients can use them locally when there is a cache hit.

As is the case in any system with cached copies, we need to be

concerned with how to maintain cache consistency. One pos-

sibility is to use “leases” as discussed below. This idea fust

appeared in [5]; it is also used in the Echo system [13], In either

case the concept is used in a file system, so the objects in question

are files. In the initial use of leases, the caches were write-

tbrough; in Echo, the caches are write-behind. This difference in

cache behavior leads to a difference in how leases are used.

Below I explain how these systems work given synchronized

clocks. The systems in fact only require synchronized clock rates

as discussed in Section 8.

In the case of the write-through cache, leases work as follows.

Each client workstation obtains a lease for a file when the file is

copied into its cache. The lease contains an expiration time E,

when E has been reached, i.e., when E > time(client) - q the client

istops using the file. The client can request that a lease can e

renewed by asking the server for anew expiration time.

When a client modMes a file, the modification goes directly to the

server (since this is a write-through cache). The server can do the

modification immediately if there are no other outstanding leases

on the file. Otherwise it communicates with the clients holding

the leases, requesting them to give them up. The modification is

done when all leases have been relinquished.

Of course, it is possible that a current holder of a lease might not

respond, either because of a network problem, or because of a

crash of its node. In thk case, the system will wait until the

expiration time of the lease, and then do the mo&fication.

The idea of leases requires only a small extension to work with

write-behind caches. Now there are two kinds of leases, read

leases and write leases, and a client must use the file in accord-

ance with its lease. Thus a client with a read lease can only read

the file, while a client with a write lease can both read and write

the file. There are the usual rules concerning readers and writers

Many clients can simultaneously have read leases for a file, but if

a client has a write lease for some file, no other clients can have

read or write leases for that file.

Each lease has an expiration time as dkcussed above. The only

difference is that competition for leases now occurs when a client

requests a lease (rather than when a file is written), If a client

needs a lease that contlcts with leases held by other clients, the
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server sends messages to the other clients requesting them to

relinquish their leases. For example, if some client needs a write

lease, the system will notify all holders of read leases to remove

that file from their caches. The new lease is granted when all old

leases are either relinquished or expired.

The invariant of interest in a system with leases is: each time a

client uses a file, it has a valid lease for that file. Validity is

determined by using the client’s clock as an approximation of the

time of the server’s clock. If the client’s clock is slow, or the

server’s clock is fas~ the invariant will not hold. In this case, the

client may continue to use the file after its lease has expired at the

server.

In the absence of the use of synchronized clocks there are two

possibilities for maintaining cache consistency, neither of which is

desirable. One alternative is for the client to check the validity of

each file use. This alternative is not much better than not having

caches at all. In particular, to read a tile in its cache, a client

would have to communicate with the server to determine if the

cached copy is valid, if it is valid, the server need not send back a

copy, so this part of the communication is save~ but in any case

there would be long delays. This is effectively a system in which

all leases have a lifetime of zero.

The other alternative is for the server to not invalidate a client’s

lease until it hears from the client. This is roughly what happens

in cache consistency protocols in multi-processors. Such

protocols are based on the assumption that nodes and communica-

tion never fail (or that all fail together); these assumptions ensure

that the wait to release the lease will be very short. Such an

assumption is less attractive in a dktributed environtnen~ here

nodes and the network can fail independently, so that the wait can

be long. In fac~ requiring the server to wait for the client to give

up leases is equivalent to having a lease with an infinite lifetime.

Thus we can see that the designer of such a system is presented

with two unattractive choices: either depend on assumptions such

as synchronized clocks that might fail causing inconsistencies, or

sacrifice performance. Choosing to improve performance is a

valid position, given the low probability of clocks getting out of

synch.

6. Atomicity
Although the decision to use leases is justifiable, still it would be

nice if there were a higher level mechanism to take care of cache

consistency problems due to unsynchronized clocks. Transactions

are such a mechanism. For example, in the Thor object-oriented

database [9, 10], all accesses to objects occur within atomic trans-

actions. Objects in Thor are not just files; instead they belong to

various types, including user-defined types. Objects are stored at

servers, which provide persistent storage for them. Clients run at

workstations, and caching is used to reduce delay to the clients.

Optimistic concurrency control [7] is used to provide serialization

of transactions. Each object has a version number that is copied

into a client cache along with the object. As a transaction runs, it

uses the objects cached at its workstation without communicating

with the servers. When the transaction conunits, the version

numbers of all the objects it used are sent to the servers along with

the new versions of all objects it modified. The servers compare

these version nttmbers with those stored with the objects; if the

numbers do not match, the transaction must abort.

To reduce the likelihood that transactions will abort due to stale

dat~ servers notify clients when objects in their caches are

modified by a committing transaction. Leases can be used to limit

server responsibility for notifying clients about stale information

and to delay commits of transactions that might cause transactions

running at other clients to abort. Since Thor is a write-through

system (writes are delayed until transactions commit, but really

happen at this point), there is just one kind of lease. When a

transaction that modified object x attempts to commit, the server

can check with all other clients holding unexpired leases on x,

asking them to give up their leases, and allow the transaction to

commit only if all clients relinquish their leases, or when all

leases expire.

The invariant in this system is: each time a client uses an object,

it holds a valid lease for that object. If clocks get out of synch, the

invariant might not be preserved. However, in Thor the worst that

will happen is that some transaction may have to abort. No

darnage will have been done to the consistency of the persistent

objects. Thus, the higher level mechanism (transactions) provides

the safety that was missing in the lower level mechanism (leases).

7. Commit Windows
The final example concerns the use of synchronized clocks within

a replication algorithm. The algorithm to be described is used in

the Harp file system [1 1]; a similar technique is used in Echo [13].

Harp is a replicated Unix file system that provides highly reliable

and highly available storage for files. It supports the virtual file

system (VFS) [6] interface and is intended to be used within a file

service in a distributed network, such as NFS [20, 23]. The idea

is that clients continue to use the file service just as they always

did. However, the server code of the file service calls Harp and

achieves higher reliability and availability as a result. Harp runs

each file operation as an independent atomic operation, as is usual

in file systems, there is no mechanism to run transactions consist-

ing of sequences of operations.

Harp uses the primary copy replication technique [1, 17, 18]. In a

primary copy method, client requests are sent to just one server

called the prirnury; the other servers are backups. The primary

decides what to do and records any new information at a

sub-majority of backups before committing the operation. A

sub-majority is one less than a majority, e.g., if there are five

servers, the operation would be recorded at two backups before it

commits. Since the primary also knows about the operatiom this

means a committed operation is known to a majority of replicas.

The primary and backups always run withii a view; a view is

simply the group of replicas that are currently cooperating to

provide service. When there is a failure, or a recovery from a

failure, the system reconfigures itself by performing a view

change [2, 3], which leads to the creation of a new view. A view

always contains a majority of servers; this ensures that the new
view intersects with the old one in at least one replica which in

tom can be used to ensure that the new view starts in a state that



reflects all committed operations from earlier views. The primary

of the new view may be a different node than the primary of the

old view.

In Harp, each replica maintains a log in which it records infor-

mation about client modification operations. 2 To carry out a

modification operation, the primary creates an event record that

describes the modification, appends it to the log, and sends the

logged information to the backups. As new log entries arrive in

messages horn the primary, a backup appends them to its log and

sends an acknowledgement message to the primary. When ack-

nowledgments have arrived horn a sub-majority of backups, the

primary commits the operation and responds to the client.

Read operations (e.g., to determine file status) could be handled

similarly to modification operations by making entries in the log

and waiting for the ack from the backup, but this seems unneces-

sary because read operations don’t change anythiig. Therefore

read operations are performed entirely at the primary. This can

lead to a problem if the network partitions. For example, suppose

a partition separates the primary from the backups, and the back-

ups form a new view with a new primary. If the old primary

processes a read operation at this point, the result returned might

not reflect a write operation that has already committed in the new

view. Such a situation does not compromise the state of the file

system, but it can lead to a loss of external consistency [4]. (A

violation “of external consistency occurs when the ordering of

operations inside a system does not agree with the order a user

expects.)

Synchronized clocks can be used to reduce the probability of

having a violation of external consistency. Essentially the

primary holds leases, but the object in question is the entire

replica group. Each message sent by a backup to the primary

gives the primary a lease. The primary can do a read operation

unilaterally if it holds unexpired leases from a sub-majority of

backups. When anew view starts, its new primary cannot reply to

any client requests until rdl leases given to the old primary by

replicas in the new view have expired. Leases are shor~ e.g., to

create the expiration time in a lease a backup might add one

second to its current time; therefore a new view is unlikely to be

delayed since by the time the view change has finished the old

leases will all have expired.

The invariant in this system is: whenever a primary performs a

read it holds valid leases from a sub-majority of backups. This

invariant will not be preserved if clocks get out of synch.

However, the impact of violating the invariant is small. At worse

there will be a violation of external consistency, but in fact this is

unlikely. For the violation to happe~ there must be two clients

Cl and C2, with Cl doing a read at the old prirmq, and C2 doing

a write at the new one. Here is the scenario:

1. C2 performs a write at the new primary.

2. C2 informs Cl (e.g., by performing a remote proce-

dure call to Cl) about the update.

‘In Haw, the log is kept in volatite memory, which is backed-up by an

uninterruptible powar supply. The power supply allows tbe saver ancugb time to

copy tbe log to disk in the event of a power failure.

3. C 1 reads the modified file (at the old primary) and

does not see the update.

It is unliiely that clocks would become unsynchronized enough

for this to happen.

A similar technique could be used to avoid two-phase commit for
read-only transactions. The technique works as follows. Suppose

a transaction st~ts at some node and visits other nodes by making

remote procedure calls (RPCS). Each node that it visits contains

objects that the transaction can read or modify. The reply to an

RPC contains an indication of whether the transaction read or

modified objects during that call and a time during which the node

promises to not release any read locks. When the transaction

attempts to cotnmi~ if it is read-only (all RPC replies indicated

that it only read objects), and if the time at the coordinator is less

than the promised release time (minus E) for all read locks, the

coordinator can commit the transaction without communicating

with any other nodes. Note that as in the commit window

scheme, a node must not provide service when it recovers from a

failure until it is certain that all promises have expired.

If clocks get out of synch, this algorithm may result in non-

serializable behavior. For example, if one of the participants

releases a transaction T1’s read locks early because its clock is

fas~ this may allow some other transaction T2 to modify objects

at P after T1 read them, and to modify objects at some other node

Q before T1 reads them. As was the case in the Harp file system,

a situation in which thk occurs is highly unlikely. Furthermore,

out-of-synch clocks affect the serial order only of read-only trans-

actions; all transactions that modify objects would be serialized

properly with respect to one another. Although it is probably not

a good idea to adopt such transactions as the only choice, they

might be a useful option. Certain applications might be willing to

settle for a slight danger of seeing an inconsistent state in a

read-only transaction to gain the improved performance that

would result.

8. Synchronized Rates
Several of the algorithms discussed above can be implemented

using synchronized clock rates rather than synchronized clocks.

This section discusses how rates are used instead of clocks, and

when rates me adequate.

Suppose we want to use the cache-consistency lease mechanism,

but based on synchronized rates instead of synchronized clocks.

Then instead of the message from the server containing an expira-

tion time, it would contain a time to expiration, i.e., an interval

such as “five seconds. ” A client always receives a lease in

respxtse to some message it sent it simply adds the expiration

interval of the lease to the time of its clock when it sent the

request for the lease, obtaining a local expiration time Tc. The
server does the same thing, but its local expiration time T~

depends on the time of its clock when it sent the response.

Provided the clock rate differences are bounded by some skew,

and that this skew is used at the client to determine when the

leases expire, we can be sure that the lease will expire at the client

no later than it expires at the server. This is true because the

response at the server must have occurred after the request was

sent by the client.



The use of leases illustrates the kind of situation in which

synchronized clock rates can be used instead of synchronized

clocks. In all these algorithms, there is some event of interest, e,

such as the expiration of a lease at the server or the expiration of a

ticket at the TGS. Call the node where this event happens the

owner, O, of the event. The event e occurs at time To; here Te is

the real time at which e occurs rather than a time of some node’s

clock. Some other node (or nodes) depends on event e and must

make a conservative judgment about when it occurs. Call this

other node the dependent node, D. The dependent node makes the

approximation by means of an event d of its own, d happens at

absolute time Td, and we require that Td s Te. For example, the

expiration of a lease at the client is such an event d and it must

happen no later than the expiration of that lease at the server.

The event of interest e is always preceded by some other event f

that leads to it and that also occurs at e’s owner. For example, the

TGS granting a ticket is such an event f. Note that the dependent

node will find out about f via a message that arrives from the

owner (possibly sent via intermediate nodes); for example, this is

how the client finds out about the granting of the lease. Rates can

be used instead of clocks if there is some still earlier event g that

happens at dte dependent node D and that leads to f. For example,

a lease is granted at the server because a client requested it. The

situation is illustrated in Figure 8-1.

Dependent Node Owner

11
g—–—–___—f_—— ——

d
e

Figure 8-1: Using rates. Time increases going down.

Rates work because this communication pattern enables D to

make the necessary conservative judgment. The event d will

happen at time T + k - &. Here T& is the absolute time at which

event g occurre~ k is the expirahon interval, and s is the ap-

propriate bound on the skew based on how rates can vary over an

interval k. Furthermore, e will happen at time Tf + h. Thus we
have:

Td=Tg+X-E

Te=Tf+k

Since Tg s Tf and the skew in the rates of the clocks at D and O

during the interval Z is bounded by E, we kIIOW that Td S Te

Thus rates can be used when there is a mmrnunication already

happening that allows the dependent node to estimate ap-

proximately when the event of interest happens. Clocks are

needed when there is no such communication in fact, clocks

permit the communication to be avoided. For example, in the

at-most-once protocol the owner O is the sender of the message

the receiver is the dependent node D. Since the message is sent

autonomously by the sender, without a prior communication from

the receiver, there is no way to use rates. In the case of Kerberos

tickets, the request of a client for a ticket might appear to be event

g, but the client cannot be trusted to abide by any rules, so that the
server is the one that enforces the expiration time. Thus the server

is actually the dependent node D. If the TGS communicated with

the server before granting the ticket, it would be possible to use

rates: The server’s response in this communication would be the

event g that leads to event f (the TGS’s granting of the ticket),

However, this communication does not in fact take place, which

speeds up the ticket-granting process.

The focus on algorithms that depend only on rates is likely to

dminish now that synchronized clocks exist, Note that

synchronized clocks are more powerful than synchronized rates;

they support all algorithms that depend on rates, and some other

algorithms besides.

9. Discussion
Earlier sections of this paper have looked at how synchronized

clocks are used in a number of distributed algorithms. In each

case, clocks were used to provide improved performance by

avoiding communication. In some algorithms, communication

could also have been avoided by retaining state (e.g., in the use of

authenticators in Kerberos, or in the at-most-once message

protocol); for these, the use of clocks can also be thought of as a

way of using garbage collection of “old’ information to reduce

storage requirements.

The algorithms differ in the consequences of clocks getting out of

synch. There are the following possibilities:

1. No effect on correctness. This is the case with the

at-most-once message protocol and also with the

authenticators in Kerberos provided the server keeps

track of the timestamps of all recent messages.

2. Compensation. Even when clock synchronization

gives rise to errors, there maybe some other part of

the system that compensates. The use of atomic

transactions is an example of how a problem at one

level of a system maybe resolved at a higher level.

3. Domination by other failures. In some systems,

failures that arise because clocks are out of synch

are dominated by other possible failures. This is

what happens with Kerbcros tickets. Tickets might

be used too long if servers’ clocks are slow.

However, using a ticket that was supposed to last for

several hours for an extra few minutes is not a

serious matter, especially compared to other dif-

ficulties such as stolen tickets.

4. Trade-off for performance. Finally, it is reasonable

to choose a mechanism that works improperly when

clocks fail when the alternatives are unacceptable.

For example, the alternatives to leases are either

high overhead on each read, or very long periods in

which certain files cannot be used.
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Although none of the algorithms depends on clocks approximat-

ing “real” time, all require that clock rates approximate real time

passing. For example, a Kerberos ticket is supposed to have a

lifetime that approximates a real time interva~ a ticket that is

intended to last for one hour should last for about that long. The

algorithms rely on real clock rates because they all depend on

lifetime intervals that are chosen based on expectations about user

requirements. Thus, the lifetime of a ticket is chosen based on an

analysis of the likelihood that it will be stolen within that time and

the seriousness of the consequences of such an event.

To convert a distributed algorithm to one that uses synchronized

clocks, there are two places to look. By examining the messages

that are being exchanged, it maybe possible to identify some that

could be avoided by using timestamps. Or, in the case where

message exchange is already reduced by maintaining state, it may

be possible to find a way to save storage by using timestamps as a

garbage collection technique. After finding a place to use times-

tamps, the next step is to analyze the consequences of using

synchronized clocks, both on normal behavior (when clocks are in

synch) and during clock failures. During thk analysis the time

interval that will be used is selected (all algorithms have such an

interval, e.g., the message lifetime interval p in the at-most-once

protocol). An algorithm based on tirnestamps is a good idea if

ultimately the worst case behavior is sufficiently unlikely or suf-

ficiently benign so as to represent a good tradeoff for improved

performance.
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