
DRAFT. Copyright FSMLabs Inc. All rights reserved.

1



DRAFT: Security for industrial real-time control
With notes on: ”Partitioning Kernel Protection Profile”

Victor Yodaiken
yodaiken@fsmlabs.com

Abstract

This note looks at security issues for real-time control systems and describes the RT-
Core and RTLinux approach to security.

Contents

1 Introduction 3

2 Security Goals and Design. 3
2.1 Vulnerability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Range of target systems and environments . . . . . . . . . . . . . . . . . . . . 4

3 Basic Design Elements 5
3.1 RTCore Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Leveraging RTCore as a security monitor. . . . . . . . . . . . . . . . . . . . . . 5
3.3 High level view of security approach. . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Comparison with PKPPR and details . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Common Criteria 10
4.1 Class FAU: Security Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Class FCO: Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Class FCS: Cryptographic Support . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Class FDP: User Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Class FIA: Identification and Authentication . . . . . . . . . . . . . . . . . . . . 12
4.6 Class FMT: Security Management . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7 Class FPR: Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.8 Class FPT: Protection of the TSF . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.9 Class FRU: TOE Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . 13
4.10 Class FTA TOE Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.11 Class FTP: Trusted Path/channels . . . . . . . . . . . . . . . . . . . . . . . . . 14

A Limitations of the MMU 14

B Composition 15

2



1 Introduction

FSMLabs develops and markets operating systems and related software for infrastructure
real-time control : factory automation and manufacturing test, robotics, instrumentation, medi-
cal equipment, data communication and telecommunication, power transmission, and process
control. Mission critical applications include infrastructure communication switches, the test
frame for jet engines, satellite control, and machine tool controllers. Infrastructure real-time
control software is becoming more pervasive and systems are becoming more sophisticated
and more connected both to other control systems and to networks and databases. Because
this type of software is pervasive, more and more of the infrastructure depends on it. Because
the software is becoming more sophisticated, old old methods of manual over-ride are less
effective for fail-stop security. And the traditional method of physical isolation is no longer
practical as a security barrier.

This note describes FSMLabs evolving approach to security for control software based
on our real-time operating system and control products. Our approach is within the Common
Criteria framework [N2198] and is focused on the mission critical applications common to our
customer base.

This note also responds to the document ”Partitioning Kernel Protection Profile Re-
port”(PKPPR) by Mike Weller (Rockwell-Collins), Roger Odell (Rockwell-Collins) and Lee
MacLaren (Boeing)[MWRC02]. PKPPR was submitted for comment to the Real-Time and
Embedded Forum of the OpenGroup as a possible standard for RTOS security.

2 Security Goals and Design.

2.1 Vulnerability analysis

Any discussion of security must begin with a threat analysis.

1. Economic barriers to use. Security mechanisms that lower the economic value or de-
crease the utility or safety of software will be bypassed or not purchased. While it may be
possible to mandate use of secure software in certain restricted military or highly safety
critical civilian applications, such as core avionics systems, security measures must
make economic sense to be of practical use in the larger infrastructure control market.
See [And] for some valuable materials on this topic and particularly see [And01a].

2. External Access. Industrial control systems are often accessible over some network or
via some other partially secured interface. External threats include denial of service
attacks and unauthorized access. Note that the prescription to put the system behind a
firewall does not solve the problem but merely states that there is a need to secure the
communication channels.

3. Real-time operation. Real-time operating systems are much more vulnerable to ”denial
of service” attacks than are time-sharing systems because a ”slow-down” on a time-
sharing system may be a catastrophic failure on a real-time system. The Common
Criteria Family Resource Usage (FRU) covers protection against attacks that break re-
source allocation including priority. This ”family” is at the core of a secure RTOS.

3



4. Inherited Security Failures. Industrial real-time control software will depend on commer-
cial standard hardware and software. Exploitable security weaknesses in those compo-
nents can produce holes in system security.

5. Digital Rights Management Systems. Commercial digital rights management (DRM)
initiatives like the Trusted Computing Initiative embed dangerous trojan horses in both
commercial software components and hardware platforms. DRM systems are both a
point of entry for attackers and a source of possible auto-immune reactions where the
DRM incorrectly detects license violations and damages system operation. See [Yod01]
for more details.

2.2 Range of target systems and environments

Three example target systems should illustrate the nature of the challenge.

1. RTLinux is being used on a large scale ”machine-in-loop” test frame that runs on net-
works containing multiprocessor PC/Server type computers, VME backplanes, and sev-
eral different Single Board Computers (SBCs). Timing requirements are on the order
of 100 microseconds worst case scheduling jitter. The system is accessible via a cor-
porate network supplying an operator interface and connection to databases. Data that
is secret/Top-secret and company confidential is produced and used by this system.
There are no untrusted users, but protection against external threats and trojan horses
is essential.

2. RTCoreBSD is being used for a high speed network ”edge” device that routes voice and
data streams. The hardware base is dual processor Pentium 4 machines that must also
run large database programs. Timing requirements are on the order of 10 microseconds
worst case jitter. Company and customer confidential data is stored on board. External
threats are the primary concern.

3. RTLinux is used in a factory process control system consisting of a network attached
to the Internet and corporate databases, and instances of control computers connected
to both the local network and dedicated networks of simple controllers. The simple
controllers are extremely cost and power sensitive and generally are small mmu-less
devices with little additional memory to spare. The security of these simple components
must be a composite property of their own protections and protections provided by the
connecting node.

4



3 Basic Design Elements

3.1 RTCore Design

RTCore is a small hard real-
time kernel that can run a sec-
ondary operating system as a
pre-emptible thread. The com-
mon secondary operating sys-
tems are Linux (for RTLinux),
and BSD UNIX. The intent of
the design is to decouple tim-
ing critical operation from the
complex services and appli-
cations of the non real-time
system, but to make those
services available to real-time
software. RTCore applica-
tions are threads and signal
handlers running either within
a shared supervisor address
space or within the address
space of a host user pro-
cess. As an indication of per-
formance, a 1 millisecond real-
time thread on RTLinux shows
no more than 12 microseconds
scheduling delay under heavy

load on a standard AMD Athlon K7 based PC while the worst case scheduling jitter on a
Compaq IPAQ PDA using a 200MHz StrongArm processor is under 35 microseconds.

3.2 Leveraging RTCore as a security monitor.

The basic RTCore design provides several avenues towards security using a partitioning ap-
proach similar to that used in [MWRC02]. RTCore imposes three partitions: real-time kernel,
secondary system (kernel/user), real-time process space application. The secondary kernel
and its applications provide a security system consisting of P (secondary kernel permissions),
N (secondary kernel network and communications) RTLock (real-time kernel monitor), LNet
(real-time kernel filter) and CK (controls kit) components. Heavyweight security components,
base encryption, permissions/capability checking, IPSec, and other standard modules exe-
cute in the secondary kernel partition P and N components (possibly as user processes).
The real-time kernel partition supports both the RTLock and LNet components. The RTLock
component monitors the integrity of the N,P components. The LNet component is a real-time
network system that filters communications. The CK component provides semantic depen-
dent security. Many real-time applications export an operator and control interface in terms
of sets of control variables that can be read and set (perhaps via a triggering operation or

5



by connecting functions to variables). We have developed a general purpose tool-kit called
ControlsKit for exporting control variables in order to make it convenient to build graphical
user interfaces, use browsers or even spreadsheets as operator interfaces and interconnect
control systems in a structured manner. ControlsKit implements a rules-base for validating
commands that modify or expose control variables and this rules base is the heart of the CK
security methods.

1. The RTCore real-time kernel is small and amenable to verification. The full kernel,
suitable for multi-processor operation is under 30,000 lines of code mostly divided into
small independent modules. The RTCore kernel is especially well suited to enforcement
of the Common Criteria FRU functional unit.

2. RTLock software can validate the integrity of the P and N components. Undetected
compromise would require compromise of both systems under difficult timing con-
straints. For example, the security components of P can be periodically examined to
validate that code pages remain read-only and not modified, that core data structures
remain sensible and are correctly signed, that no unexpected process is running with
too many privileges, and that security and networking components are running at rea-
sonable frequency. The RTLock software might force a restart from secure storage if
it detected an integrity failure or it might be required to periodically validate integrity to
an external monitor so that any interference with its timing would be detected. This
approach broadens the use of a RTCore security mechanism to enterprise and other
systems that are not themselves time critical.

3. LNet partition software can provide a transparent network security level that can defend
against denial-of-service and penetration attacks above the traditional protocol stacks
and by detecting timing anomalies.

4. The P and N software in its own partition can run standard security and encryption
modules, obviating requirements for expensive and poorly tested niche software.

5. When the target secure system interaction to the outside world is limited to going via
ControlsKit the CK partition can do semantically rich analysis of commands and can
require validation based on that knowledge base.

The standard RTCore method and this security approach can be applied to non-
traditional secondary kernels, such as a Java Virtual Machine.

The approach taken here is specifically designed to not require hardware enforcement
of secure address spaces but to be able to benefit if such hardware is present. The PKPR re-
lies almost exclusively on hardware memory management units of standard microprocessors
for separating domains. For reasons given in appendix A, we believe that such an approach
has limited applicability in our domain. There are, however, some ways to use hardware to
harden systems that we will actively explore.

1. TCPA devices . TCPA is a double edged sword for security. While, in its present incar-
nation TCPA seems more concerned with digital rights management (DRM) than with
security, and thus actually creates security problems, sensibly designed TCPA hardware
would provide secure encryption and secure key storage. Since this is the purported

6



aim of TCPA vendors, it is possible that enough customer resistance to intrusive DRM,
usable TCPA hardware will become commonly available. This hardware will provide
mechanisms for meeting Common Criteria FPT SEP (separation of security domains)
in a reliable fashion.

2. External monitors. If we either attach a hardware monitor or connect over a network
to a monitoring node, we can provide hardware separation outside of the MMU. Sup-
pose that we provide a device that can force reboot or shutdown and that requires a
1 millisecond periodic validation from the RTLock component. In this case, RTLock
will do a lightweight and incremental check of P and N as well as its own integrity and
will generate an appropriately difficult to counterfeit value to signal the monitoring de-
vice. To defeat this security, an attacker would need to compromise P and RTLock , and
take over the validation task of RTLock without producing a timing change. Inactivating
RTLock will not be enough to prevent a secure reboot. Instead of a special purpose
device, we can use a peer or controlling node on a deterministic network. This second
solution does not require any special hardware and is better suited to E-Commerce ap-
plications where detection of a possible compromised node can initiate a recovery or
isolation operation.

3. Special purpose memory protection. The sophistication of standard paging MMUs
is far beyond the requirements of separating security domains. A simple mechanism
for protecting the data and instruction space the RTCore and RTLock component can
easily be implemented outside the standard MMU.

3.3 High level view of security approach.

1. Defense in depth. As Schnier[Sch00] points out, we cannot rely on an unbreachable
wall and must instead build a secure system to both be difficult to penetrate and to ”fail
gracefully”. Our approach is to place as much as possible of the complex security sys-
tem in secondary kernel and secondary kernel application code and to use the secure
RTCore kernel to monitor the integrity of those components.

2. Partitioning. PKPPR identifies the complexity of secure kernel as a critical parameter. If
the ”secure” kernel is too large and complex, it cannot be validated with much degree of
assurance. We believe that the size of the RTCore kernel is not out of reach of thorough
analysis and mathematical validation because the RTCore kernel is itself quite modular
and structured. RTCore kernel is at a minimal size for a usable core kernel, for our
application domain.

3. A range of profiles. We propose to define protection profiles for secured systems based
on a two dimensional matrix of accessibility (‘ what can be guaranteed about the safety
of the external environment) and event range (what inputs are permitted from the exter-
nal environment). For accessibility: if a system is connected only to a dedicated serial
cable that comes from a secure operator port, it needs less security than a system that
has an Internet port or a phone line coming into it. For event range: if a system will ig-
nore any inputs except for signed control packets of a fixed form, then it can be secured
more easily than a system that accepts any IP packets.

7



(a) Uncontrolled for full Internet or phone or radio interface where a full range of threats
are possible.

(b) Plant network for devices that are connected only to an intra-net or other par-
tially controlled networks. Primary threats include unauthorized access, erroneous
or spurious commands, data movement either to or from incorrect locations, and
compromise of the plant network firewall.

(c) Device Network where controllers connect to a dedicated network that has only
secure nodes and possibly a firewall to an external network. Threats here a pri-
marily spurious commands, failures due to misconfiguration, and threats due to
compromise of the firewall.

(a) Unrestricted. There are no a priori restrictions on what requests can be accepted
and processed by the system.

(b) Certified. Only packets signed by a secure source are accepted.

(c) Bounded. There is a set of known commands and only commands from that that
set are accepted. I assume that these will also be certified.

(d) Fixed. Bounded and also command/source pairs are specified in advance so it is
known which sites can send what commands.

From the criteria defined, we can get a sense of the stress on the various security com-
ponents. Table 1 shows the relationship between accessibility, permitted events, and security
components. The top left cell has open communications and no restrictions on events, so it
stresses all components. The bottom right cell is on a device and has a fixed set of events,
so the CK component is the gateway for all requests and those requests can only come from
safe sources.

8



EVENTS ACCESSIBILITY

Open Plant Device
Unrestricted All components are

exposed to any at-
tack

Same as Open case
unless the Plant
network firewall
is to be relied on
and we don’t worry
about internal
accesses.

Minimize depen-
dence onN since
access is only from
secure nodes, but
still need LNet to
screen out packets
that come from
outside and need
P,M because we
have no limit on
request types.

Certified F,N,C are more ef-
fective as an at-
tacker must pro-
duce a fake cer-
tificate to get past
them.RTLock can
use semantic infor-
mation fromCK

Same as the Open
case.

Minimize depen-
dence onP,N since
commands come
from secure neigh-
bors only and must
be certified too.

Bounded Limit dependence
on P and on N if
the bounds are well
chosen. CK is
much stronger.

Same as the Open
case but perhaps
we can relaxN fur-
ther.

Minimize depen-
dence onN,P.

Fixed CK is the primary
security wall, but
we needLNet to be
the primary firewall
and still need N
to validate connec-
tions

Same as the Open
case.

Minimize
N,P,M,F. If CK
works, we are safe.

Figure 1: Accessibility versus event range

9



3.4 Comparison with PKPPR and details

PKPPR specifies a protection profile for the memory mapped control section of a real-time
opearating system. RTCore is agnostic about memory mapping. There is no reason why a
PKPPR compliant partitioning kernel could not be used as the secondary kernel of a RTCore
instantiation. PKPPR depends exclusively on memory mapping hardware to protect partitions
from each other. For certain systems, our approach can benefit from memory protection for
the real-time kernel partition, but we do not depend on it for two reasons. The first reason is
that we must accommodate several classes of hardware platforms where the memory map-
ping hardware partition scheme is not practical. The second reason is that we believe that the
use of real-time integrity monitoring of P,N by RTLock and of RTLock by an external monitor
and the extensive use of the CK partition can provide a strong assurance without memory
protection hardware. See appendix A for more details on memory management.

4 Common Criteria

The Common Criteria uses a large number of multi-layer three letter acronyms to disguise
the clarity of the basic specification. The secured system we evaluate (Target of Evaluation
or TOE) contains security components (TOE Security Functions or TSF) which enforce the
security policy (TOE Security Policy or TSP) throughout the secured system (TOE Scope
of Control or TSC). Communications with the secured system is, via the security function
interface which is, surprisingly denoted by a four letter acronym:TSFI which, of course, stands
for TOE Security Functions Interface. The security components must also manage a collection
of subjects which are things like processes, and external objects that are local users, remote
users, and remote devices (Remote IT Products). All of this is neatly summarized in figure 2.

Figure 2: The Common Criteria Map of the World

For RTCore,
there are 4 classes
of subjects: Real-
time application
components fall
into two cate-
gories: supervi-
sor space and
process space.
Supervisor space
real-time appli-
cations must be
completely trusted
and validated. Pro-
cess space com-
ponents run within
the address space
of UNIX processes
are are prevented
from uncontrolled

10



access to the
address space
of the the RT-
Core and can be prevented from monopolizing CPU time. Non-real time subjects include
both the general purpose kernel and its objects such as file systems, and user processes.

Component mode supervision
RTCore kernel components supervisor* trusted
Kernel RT threads and handlers supervisor time
Process Space RT threads user all resources
Application kernel supervisor time, semantics
Application processes user all resources.

4.1 Class FAU: Security Audit

Security auditing involves recognizing, recording, storing, and analyzing informa-
tion related to security relevant activities (i.e. activities controlled by the TSP).
The resulting audit records can be examined to determine which security relevant
activities took place and whom (which user) is responsible for them.(From CC)

We provide secure audit trail in M,F,C and use RTLock to ensure that P,N data is secure
by, e.g. checking that the inode for the trace file never has write enabled by more than one
task.

4.2 Class FCO: Communication

This class is concerned with ”non repudiation”. Imagine a factory automation system in which
a control subsystem must validate the source of a command to be authorized. The non-
repudiation of origin family provides a subject with a proof that a message comes from the
claimed source. The non-repudiation of receipt family provides evidence that the data was
received. This type of service is a common requirement in distributed control systems.

Non-repudiation is application dependent and communication media dependent, but
the RTOS and RTOS components need to provide non-repudiation services to match the
application requirements.

LNet can force acks of raw messages that need this service and on some media, e.g.
firewire, there is hardware support. The N and P components will need to have some non-
repudiation support, but CK can offer a powerful non-repudiation system by using signed
commands.

4.3 Class FCS: Cryptographic Support

There must be a provision in a secure RTOS for plugging in secure cryptographic support.
This is straightforward, and we expect two levels of cryptographic support: a fast system in
the RTCore and a possibly more sophisticated version in the secondary system. If compo-
nents of the cryptographic system are placed within the secondary kernel or secondary kernel
user processes, the RTCore security component can periodically validate the integrity of the
cryptography system by: validating checksums on critical data structures, validating that the

11



physical pages have not changed and that code pages have not been updated since initial-
ization of the security modules, and so on.

4.4 Class FDP: User Data Protection

This is mostly an issue of RTLock monitoring P, but it is worth noting that user data protec-
tion is often very complex in industrial real-time. In many of these systems we need ”mul-
tilateral” as opposed to ”multi-level” security. See, for example, Ross Anderson’s standard
textbook[And01b] for discussion of this issue. A MLS focus does not satisfy requirements for,
say, a medical instrument which may contain confidential patient records or a telecommuni-
cations switch which needs to protect pricing data from unauthorized modification, but must
make pricing data available.

The RTLock component may ensure that critical files and code of the P and N compo-
nents are not accessed by other users.

4.5 Class FIA: Identification and Authentication

Families in this class address the requirements for functions to establish and verify
a claimed user identity.

Identification and Authentication is required to ensure that users are associated
with the proper security attributes (e.g. identity, groups, roles, security or integrity
levels).

The unambiguous identification of authorized users and the correct association
of security attributes with users and subjects is critical to the enforcement of the
intended security policies. The families in this class deal with determining and
verifying the identity of users, determining their authority to interact with the TOE,
and with the correct association of security attributes for each authorized user.
Other classes of requirements (e.g. User Data Protection, Security Audit) are
dependent upon correct identification and authentication of users in order to be
effective.

This is a P,N responsibility.

4.6 Class FMT: Security Management

The key issue here is definition of security roles.

4.7 Class FPR: Privacy

This is a P,N responsibility.

4.8 Class FPT: Protection of the TSF

This class contains families of functional requirements that relate to the integrity
and management of the mechanisms that provide the TSF (independent of TSP-

12



specifics) and to the integrity of TSF data (independent of the specific contents of
the TSP data). In some sense, families in this class may appear to duplicate com-
ponents in the FDP (User data protection) class; they may even be implemented
using the same mechanisms. However, FDP focuses on user data protection,
while FPT focuses on TSF data protection. In fact, components from the FPT
class are necessary to provide requirements that the SFPs in the TOE cannot be
tampered with or bypassed.

From the point of view of this class, there are three significant portions for the TSF:

• a) The TSF’s abstract machine, which is the virtual or physical machine upon
which the specific TSF implementation under evaluation executes.

• b) The TSF’s implementation, which executes on the abstract machine and
implements the mechanisms that enforce the TSP.

• c) The TSF’s data, which are the administrative databases that guide the
enforcement of the TSP.

(quote from [N2198])

4.9 Class FRU: TOE Resource Utilization

The first security requirement of a real-time operating system is to make sure that nothing sub-
verts the execution of critical tasks at the scheduled time. Common Criteria FRU specification
defines three families, all critical to real-world real-time control systems.

The family Fault Tolerance provides protection against unavailability of capabili-
ties caused by failure of the TOE. The family Priority of Service ensures that the
resources will be allocated to the more important or time-critical tasks and cannot
be monopolized by lower priority tasks. The Family Resource Allocation provides
limits on the use of available resources, therefore preventing users from monopo-
lizing the resources ([N2198])

From our perspective, all three families essential and inter-dependent, but let’s focus for
now on the Priority of Service family which is at the heart of the matter.

The requirements of this family allow the TSF to control the use of resources
within the TSC by users and subjects such that high priority activities within the
TSC will always be accomplished without undue interference or delay caused by
low priority activities (Common Criteria[N2198]).

Denial of service is a danger whether there are static or dynamic schedules in any
practical system in the general control market. Why? Consider a device managing a machine
tool or power switch that is connected to a network and suppose it is bombarded with spurious
messages: the classical DOS attack. Everything is going to be on the Internet. We cannot
pretend otherwise. But even without the Internet, any system that responds to interrupts or
other asynchronous events must be DOS hardened. A secure RTOS must be able to manage
uncertainty and to bound delays caused by events.

FRU is the most essential Common Criteria specification for a RTOS used in our mar-
kets.

13



4.10 Class FTA TOE Access

User access. For dedicated controllers, the only user access is an operator console or means
of installing software. For more complex systems, there may be user access.

4.11 Class FTP: Trusted Path/channels

This is very much dependent on the accessibility parameter.

A Limitations of the MMU

• The non-mmu versions of the ARM7 are among the worlds most widely utilized proces-
sors, they are at the heart of many control systems, and this is only one of many in
a class of mmu-less processors that includes FR-V 403, varieties of ARM9, Motorola
DragonBall and so on. Ruling these microprocessors out closes out a large part of a
real-world market, needing a security profile.

• The Intel XSCALE processors, Texas Instrument Dual DSP/ARM, and many other new
microprocessors utilize both a MMU capable microprocessor and a no-MMU ”micro-
engine” or DSP. Designs in which discrete DSPs are used in combination with micropro-
cessors are also common. In all of these, the second microprocessor can bypass the
MMU. PKPPR approaches require that these units be controlled outside the partitioning
kernel by similarly validated software components.

• PKPPR authors rule out systems that have virtual memory. They need to do this be-
cause PKPPR requires that the partitioning kernel must (1) be extremely small and
simple(2) have sole control of the MMU and (3) prevent any use of shared memory. But
decisions on when to modify MMU can be very complex. Consider what happens on a
page fault of a user process in an SMP server - and note that this could very well be
a telecommunications switch using a PMC-Sierra dual RM7000 processor and running
a SS7 database. The fault indicates an access to a logical page that is not mapped to
a physical page in memory. The decision on when or if to modify the PTE depends on
the I/O subsystem, the replacement algorithm, the underlying file system, and possibly
on the capabilities and access control of the subject. Is the partitioning kernel going to
know that process X has permission to map in block Y of file Z ? If so, it will be too big
to be validated. If not, it will be placing responsibility for this decision in the hands of
the external memory manager. In either case, the theory that a small, totally validated,
partition kernel will handle the mapping is hard to credit. To me, this is a very interesting
technical question that has several possible answers. In RTLinux, one answer may be
that certain critical tasks operate in physically protected memory outside of the standard
MMU control, and these tasks include components that periodically validate the integrity
of the MMU control software in the larger system.

14



B Composition

PKPPR stresses composability, which is indeed a key requirement for making provably secure
systems. Composition is tough, however.

The classical example is the when you compose a system that connects 2 levels of se-
cure data to a component that connects the next second level to a third level, the result spans
3 levels, something that may be forbidden. More to the point, consider a system constructed
by connecting multiple PLC parts to a small computer where each of the PLC parts has an
insecure Ethernet link and the task of the computer is to connect them in a useful way so that
the composite system is secure

References

[And] Ross Anderson. Economics and security resource page. http://www.cl.
cam.ac.uk/users/rja14/econsec.html .

[And01a] R. Anderson. Why information security is hard - an economic perspective, 2001.

[And01b] Ross Anderson. Security Engineering. 2001.

[MWRC02] Lee MacLaren (Boeing) Mike Weller (Rockwell-Collins), Roger Odell (Rockwell-
Collins). Partitioning kernel protection profile report. Technical report, Submitted
to RTEF, 2002.

[N2198] ISO/IEC SC27 N2162. Common Criteria for Information Technology Security
Evaluation - Part 2: Security Funtional Requirements. 1998.

[Sch00] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World. Wiley,
New York, NY, USA, 2000.

[Yod01] Victor Yodaiken. Digital rights management implications for safety and security.
Technical report, 2001.

15

http://www.cl.cam.ac.uk/users/rja14/econsec.html
http://www.cl.cam.ac.uk/users/rja14/econsec.html

	Introduction
	Security Goals and Design.
	 Vulnerability analysis
	 Range of target systems and environments

	 Basic Design Elements
	RTCore Design
	Leveraging RTCore as a security monitor.
	High level view of security approach.
	Comparison with PKPPR and details

	Common Criteria
	Class FAU: Security Audit
	Class FCO: Communication
	Class FCS: Cryptographic Support
	Class FDP: User Data Protection
	Class FIA: Identification and Authentication
	Class FMT: Security Management
	Class FPR: Privacy
	Class FPT: Protection of the TSF
	Class FRU: TOE Resource Utilization
	Class FTA TOE Access
	Class FTP: Trusted Path/channels

	Limitations of the MMU
	Composition

