
Primitive Recursive Transducers

Victor Yodaiken
Copyright 2009.∗

yodaiken@finitestateresearch.com

August 9, 2009

Abstract

Methods for specifying Moore type state machines (transducers) ab-
stractly via primitive recursive functions are discussed. The method is
mostly of interest as a concise and convenient way of working with the
complex state systems found in computer programming and engineering,
but a short section indicates connections to algebraic automata theory
and the theorem of Krohn and Rhodes.

1 Introduction

The traditional state-set presentations of automata are hard to use when state
sets are large, when systems are composed, or when systems are only partially
known or specified. Furthermore, it would be nice to be able to parameterize
automata so that we can treat, for example, an 8bit memory as differing from
a 64bit memory in only one or a few parameters. Fortunately, state machines
can be effectively presented as recursive functions for computing outputs from
input sequences. These transducer functions can be shown to be strongly equiv-
alent to Moore type states machines but abstract out some details that are not
particularly interesting. Write λ for the empty string and wa for sequence
addition - that is for appending element a to sequence w. A definition of the

∗Permission granted to make and distribute complete copies for non-commercial use but
not for use in a publication. All other rights reserved but fair use encouraged as long as
properly cited.

1

yodaiken@finitestateresearch.com

following type completely determines the input-output behavior of a state ma-
chine so that f (w) is the output of the state machine in the state reached by
following w from the initial state.

f (λ) = x0, f (wa) = h(a, f (w)) (1)

The output can be modified by standard function composition

f (w) = h(gw) (2)

But the interesting type of composition is simultaneous recursion[Pet67]. We
can define f and f ∗ simultaneously so that f "encapsulates" a collection of pre-
viously defined transducer functions and f ∗ generates input sequences for the
encapsulated transducer functions. This type of definition creates transducer
functions that correspond to composite state machines like the one shown

here:

-

?�

- -

-- -

-- -

6
M1

M2

Mn

h1

h2

h3

Feedback

-Input

Let w ◦ z be the sequence obtained by

concatenating sequence z onto the end of sequence w1. The simultaneous
definitions look like this:

For: g1, . . . gn and h1 . . . , hn

f (w, i) = gi(f
∗(w, i)) (3)

f ∗(λ, i) = λ (4)

f ∗(wa, i) = f ∗(w, i) ◦ hi(a, f (w, 1) . . . , f (w, n)) (5)

If each gi corresponds to an Mi, the transducer function f corresponds to the
product of the Mi as shown in the drawing above in a way that will be made
precise below.

1 w ◦λ= w, w ◦ ua = (w ◦ u)a.

2

To illustrate, define mod k counters.

Ck(λ) = 0, (6)

Ck(wa) =







0 if a = reset;
Ck(w) + 1 mod k if a = increment;
Ck(w) otherwise

(7)

and a device created from an array of C2 counters that can increment, reset,
and shift left (divide by 2). Note that each input a induces a sequence of
inputs for each factor transducer — and that input sequence is λ if we want
to leave the factor in an unchanged state.

For 0< i ≤ n, D(w, i) = C2(D
∗(w, i)) (8)

D∗(λ, i) = λ (9)

D∗(wa, i) = D∗(w, i) ◦ zi (10)

where

zi =







































〈increment〉 if a = increment
and (i = 1 or Π j<i

j=1D(w, j) = 1);
or if a = LShi f t and i < n

and D(w, i) = 0 and D(w, i+ 1) = 1;
〈reset〉 if a = reset

or if a = LShi f t and(i = n
or (i < n and D(w, i+ 1) = 0))

λ otherwise

(11)

In what follows, the correspondence between transducer functions and
transducers is made clear, the correspondence between the simultaneous re-
cursion scheme given above to a "general product" of automata is proven and
some implications are drawn for the study of automata structure and algebraic
automata theory. Companion technical reports describe practical use[Yod].

2 Basics

A Moore machine or transducer is usually given by a 6-tuple

M = (A, X , S, start,δ,γ)

3

where A is the alphabet, X is a set of outputs, S is a set of states, start ∈ S is
the initial state, δ : S × A→ S is the transition function and γ : S → X is the
output function.

The set A∗ contains all finite sequences over A including the empty se-
quence λ. Let wa denote the sequence obtained by appending a ∈ A to w ∈ A∗

and let w ◦ z denote the sequence obtained by concatenating z ∈ A∗ to w ∈ A∗.

2.1 Representations

Given M , use primitive recursion on sequences to extend the transition func-
tion δ to A∗ by:

δ∗(s,λ) = s and δ∗(s, wa) = δ(δ∗(s, w), a). (12)

So γ(δ∗(start, w)) is the output of M in the state reached by following w
from M ’s initial state. Call fM(w) = γ(δ∗(start, w)) the representing function of
M .

If fM is the representing function of M , then f ′(w) = g(f (w)) represents
M ′ obtained by replacing γ with γ′(s) = g(γ(s)). The state set of M and
transition map remain unchanged.

Nerode[Arb68] showed that there is a construction of a Moore machine
M (f) from any f : A∗→ X via a left equivalence relation. Given f , say w ∼ f u
if and only if f (w ◦ z) = f (u ◦ z) for all z ∈ A∗. The relation ∼ f is readily seen
to be an equivalence relation. The set A∗ is partitioned by ∼ f into disjoint
classes of equivalent sequences: [w] f = {u : u ∼ f w, u ∈ A∗}. The set of these
equivalence classes A∗/ ∼ f= {[u] f : u ∈ A∗} can be the state set of M (f)
and the transition and output functions are given by δ f ([w] f , a) = [wa] f and
γ f ([w] f) = f (w).

M (f) = {A, X , A∗/∼ f , [λ] f ,δ f ,γ f }.

Since f (w) = γ f (δ∗f ([λ] f , w) by definition f is the representing function of
M (f). A similar construction can be used to produce a monoid from a trans-
ducer function as discussed below in section 3.1.

Any M2 that has f as a representing function can differ from M1 =M (f)
only in names of states and by including unreachable and/or duplicative states.
That is, there may be some w so that δ∗1(start1, w) 6= δ∗2(start2, w) but since
w ∼ f w it must be the case that the states are identical in output and in the
output of any states reachable from them. If we are using Moore machines to

4

represent the behavior of digital systems, these differences are not particularly
interesting and we can treatM (f) as the Moore machine represented by f .

Say that f is finite whenM (f) is finite state. While finite sequence func-
tions are the only ones that can directly model digital computer devices or
processes2, infinite ones are often useful in describing system properties.

2.2 Products

Suppose we have a collection of (not necessarily distinct) Moore machines
Mi = (Ai, X i, Si, starti,δi,λi)i for (0 < i ≤ n) that are to be connected to con-
struct a new machine with alphabet A. The intuition is that when an input a
is applied to the system, the connection map computes a sequence of inputs
for Mi from the input a and the outputs of the factors (feedback). I have made
the connection maps generate sequences instead of single events so that the
factors can run at non-uniform rates. If hi(a, ~x) = λ, then Mi skips a turn.

Definition 2.1 General product of automata
Given Mi = (Ai, X i, Si, starti,δi,γi) and hi : A× Πn

i=1Xn → A∗i for 0 < i ≤ n
define the Moore machine: M =A n

i=1[Mi, hi] = (A, X , S, start,δ,γ)

• S = {(s1 . . . , sn) : si ∈ X i} and start= (start1 . . . , startn)

• X = {(x1 . . . , xn) : x i ∈ X i} and γ((s1 . . . , sn)) = γ1(s1) . . . ,γn(sn)).

• δ((s1 . . . , sn), a) = (δ∗1(s1, h1(a,γ(s))) . . . ,δ∗n(sn, hn(a,γ(s)))).

One thing to note is that the general product, in fact any product of au-
tomata, is likely to produce a state set that contains unreachable states. The
transducer function created by simultaneous recursion represents the mini-
mized state machine as well. The possible “blow up" of unreachable and du-
plicate states is not a problem for composite recursion.

Theorem 2.1 If each fi represents Mi and f (w, i) = fi(f ∗(w, i))
and f ∗(wa, i) = f ∗(w, i) ◦ hi(a, f (w, 1) . . . , f (w, n))
and f ∗(λ, i) = λ
and M =A n

i=1[Mi, hi] then f ′(w) = (f (w, 1) . . . , f (w, n)) represents M

2There is a lot of confusion on this subject for reasons I cannot fathom, but processes
executing on real computers are not Turing machines because real computers do not have
infinite tapes and the possibility of removeable tapes doesn’t make any difference.

5

Proof: Note that f (w, i) = fi(f ∗(w, i)) by definition and each fi represents
Mi so

fi(z) = γi(δ
∗
i (starti, z)) (13)

and what we have to show is that f ∗(w, i) is correct so that

δ∗(start, w) = (. . .δ∗i (starti, f ∗(w, i)) . . .) (14)

The theorem follows directly from 14 because: f ′(w) = (. . . f (w, i) . . .) =
(. . . fi(f ∗(w, i)) . . .)
but γ(δ∗(st, w)) = γ(. . . (δ∗i (starti, f ∗(w, i)) . . .)) by the definition of M and 14
so
γ(δ∗(st, w)) = (. . .γi(δ∗i (starti, f ∗(w, i))) . . .)
= (. . . fi(f ∗(w, i)) . . .) = f ′(w).

Equation 14 can be proved by induction on w. Since f ∗(λ, i) = λ the base
case is obvious. Now suppose that equation 14 is correct for w and consider
wa.

Let δ(start, w) = s = (s1 . . . , sn) and let f ∗(w, i) = zi. Then, by the induc-
tion hypothesis si = δ∗i (starti, zi) and, by the argument above γ(δ(start, w)) =
f ′(w). So:
δ∗(start, wa) = (. . .δ∗i (δ

∗
i (start, zi), hi(a, f ′(w))) . . .)

= (. . .δ∗i (start, zi ◦ hi(a, f ′(w)) . . .)
= (. . .δ∗i (start, f ∗(wa, i) . . .)
proving 14 for wa.

It follows directly that if M is represented by f , and f is defined by simul-
taneous recursion, then f can also be defined by single recursion.

3 More on representation and some algebra

A number of results follow from theorem 2.1.

Theorem 3.1 For M and f constructed as products as above in theorem 2.1.

• There are an infinite number of distinct products M ′ =A k
i=1[Ni, gi] so that

f represents M ′ as well as M.

• If all of the Mi are finite state, M is finite state (by construction).

6

• If all of the fi are finite state, f is finite state (since it represents a finite
state Moore machine).

• If f is finite state then there is some M ′ =A k
i=1r[Zi, gi] where f represents

M ′ and each Zi is a 2 state Moore machine. In fact k = dlog2(|SM ′ |)e. This
is simple binary encoding.

Theorem 3.2 If g has a finite image and each fi is finite state and F(λ) = x0

and: F(wa) = g((F(w), f1(w), . . . fn(w)), a)
then F is finite state

Proof. Let X be the image of g and define T (λ) = ~x0 where ~x0 is the
vector of initial outputs of the fi, and T (wx) = x . Clearly, T is finite state
if its alphabet is restricted to X . Define E(w, 1) = T (E∗(w, i)) and E(w, i +
1) = fi(E∗(w, i+ 1)). Set E∗(wa, 1) = 〈g(E(w, 1), E(w, 2), . . . E(w, n+ 1))〉 and
E∗(wa, i+ 1) = 〈a〉. Clearly E(w, 1) = F(w) and since E is finite, F must be.

3.1 Monoids

If f : A∗→ X then say w ≡ f u iff f (z◦w◦ y) = f (z◦u◦ y) for all z, y ∈ A∗. Then
A∗/ ≡ f is a monoid under the operation of concatenation of representative
elements. Let [w]/ f = {u ∈ A∗, u ≡ w}. Then define [w]/ f · [z]/ f = [w ◦ z]/ f .
The set of these classes with · is a monoid where [w]/ f · [λ]/ f = [w]/ f for the
required identity.

Suppose f (w, i) is defined from f1 . . . , fn so that G∗(wa, i) = G∗(w, i)zi

where zi only depends on the feedback from factors indexed by j < i. That
is, there are r1 . . . rn so that z1 = r1(a) and zi+1 = ri+1(a, f (w, 1) . . . , f (w, i)).
In this case f is constructed in cascade where information flows only in one
direction. In this case the results of Krohn-Rhodes theory[Hol83, Gin68] will
apply.

Consider some F(w) = g(f (w, 1) . . . , f (w, n)) where f (w, i) = gi(f ∗(w, i))
is defined by simultaneous recursion. Then F is combining the outputs of
the encapsulated factors of f . Note that if a transducer function is finite, its
monoid is also finite (since the monoid can be considered a subset of the maps
from states to states). If F is finite and represents a state machine with k states
and each of the gi are finite with ki states in the represented state machine,
then if Σ j≤n

j=1k j < k then the factorization is an implementation of f by essen-
tially simpler transducer functions — and it corresponds to a factorization of
the monoid of F into simpler monoids.

7

Let Tn(λ) = 0 and Tn(wa) = T (w) + 1 mod n. Now define Gn as a cascade
of T2’s as follows:

Gn(w, i) = T2(G
∗(w, i)) (15)

G∗(wa, 1) = wa (16)

G∗(wa, i+ 1) =

¨

〈a〉 if Π j≤i
j=1G(w, j) = 1

λ otherwise
(17)

This is called a “ripple carry adder" in digital circuit engineering: each counter
increments only if the “carry" is propagating through all lower order counters.
Put G′(w) = Σi≤n

i=1Gn(w, i)×2i−1. Then G′ = Tk if and only if k = 2n. Otherwise,
the underlying monoid of Tk has a simple group factor (a prime cyclic group)
and those cannot be factored into smaller elements without some feedback.

While the cascade decompositions may simplify the interconnect in one
way, they do not necessarily indicate the most efficient or interesting decom-
position in practice. Cascades are good designs for "pipelined" execution but
may be slow if we have to wait for the data to propagate to the terminal ele-
ment. And group qualities in data structures can correspond to "undo" prop-
erties. For example, consider a circular buffer - like those commonly used for
UNIX type fifos/pipes. The idea is that "write" operations push data into the
pipe and "read" operations remove data in order of the "writes". The memory
used to hold the data is allocated in a cycle. One way to implement such a
buffer is to decompose it into an array of k memory locations and a mod k
counter. A write operation causes an increment of the counter and a store of
data in the appropriate memory location. The increment has an inverse, the
write does not. But the result is that a write can be “forgotten". Perhaps fac-
toring off group-like components will reveal other possibilities for this type of
partial inverse.

References

[Arb68] Michael A. Arbib. Algebraic theory of machines, languages, and semi-
groups. Academic Press, 1968.

[Gin68] A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.

[Hol83] W.M.L. Holcombe. Algebraic Automata Theory. Cambridge University
Press, 1983.

8

[Pet67] Rozsa Peter. Recursive functions. Academic Press, 1967.

[Yod] Victor Yodaiken. Technical reports. Technical Report
http://www.yodaiken.com/papers/.

9

