
Primitive Recursion and State Machines

Victor Yodaiken
Copyright 2009.∗

yodaiken@finitestateresearch.com

July 23, 2009

Abstract

Methods for specifying Moore type state machines (transducers) ab-
stractly via primitive recursive functions and for definining parallel com-
position via simultaneous primitive recursion are discussed. The method
is mostly of interest as a concise and convenient way of working with
the complex state systems found in computer programming and engi-
neering, but a short section indicates connections to algebraic automata
theory and the theorem of Krohn and Rhodes.

1 Introduction

A transducer or Moore type automata is readily seen to define a function on
sequences: each sequence of inputs determines a value that is the output of
the transducer in the state reached by following the sequence from the ini-
tial state. Primitive recursion offers a convenient method for defining these
sequence functions and working with the large, multi-level, interacting, and
often partially specified state machines encountered in computer engineering.
While computer scientists have resorted to many exotic mathematical objects
in an effort to evade the perceived limits of state machines, many of those
limitations can be removed by using the sequence function presentation.

∗Permission granted to make and distribute complete copies for non-commercial use but
not for use in a publication. All other rights reserved but fair use encouraged as long as
properly cited.

1

yodaiken@finitestateresearch.com

A simple primitive recursive definition of a sequence function consists of
a pair of rules f (λ) = x0 where λ is the empty sequence (which leads to the
initial state), and f (wa) = h(a, f (w)) where wa is the sequence obtained by
appending a to w. Such a function completely defines the input/output behav-
ior of a transducer — which is often all we care about. By defining automata
in terms of functions we can avoid the enumeration of state and distinctions
based on artifacts of the representation - such as the names of states and the
presence or absence of unreachable or duplicated states. Further, the sequence
function representation is convenient when transducers are only partially spec-
ified or depend on parameters such as size of memory or are known only via
constraints on behavior.

Parallel composition can be attacked using simultaneous recursion. Given
f1 . . . , fn, we simultaneously define f and f ∗ so f (w, i) = fi(f ∗(w, i)) where f ∗

computes an input sequence for the “factor" state machine represented by fi.
The idea is that when a is appended to w, the next inputs for each factor i are
computed by f ∗ from both the input a and the feedback — f (w, 1) . . . , f (w, n).
If f ∗(w, i) = z then f ∗(wa) = z ◦ u where ◦ denotes concatenation of se-
quences and u is some function of (a, i, f (w, 1) . . . , fn(w, n)). For example we
might define ui = 〈getmessage[m, j]〉 if f (w, i) indicates i is willing to accept
a message, f (w, j) indicates j wants to sent m to i and perhaps f (w, k) indi-
cates that communication between j and i is permitted. Results of classical
automata theory can be carried over to this type of function composition to
show a relationship between the feedback, the underlying group structure of
the monoid induced by f , and the extent to which a function can be factored
into simpler functions.

In what follows, the correspondence between sequence functions and trans-
ducers is made clear, the correspondence between the simultaneous recursion
scheme given above to a "general product" of automata is proven, some illus-
trations of the practical utility of the method are provided, and some implica-
tions are drawn for the study of automata structure and algebraic automata
theory.

2 Basics

A Moore machine or transducer is usually given by a 6-tuple

M = (A, X , S, start,δ,γ)

2

where A is the alphabet, X is a set of outputs, S is a set of states, start ∈ S is
the initial state, δ : S × A→ S is the transition function and γ : S → X is the
output function.

The set A∗ contains all finite sequences over A including the empty se-
quence λ. Let wa denote the sequence obtained by appending a ∈ A to w ∈ A∗

and let w ◦ z denote the sequence obtained by concatenating z ∈ A∗ to w ∈ A∗.

2.1 Representations

Given M , use primitive recursion on sequences to extend the transition func-
tion δ to A∗ by:

δ∗(s,λ) = s and δ∗(s, wa) = δ(δ∗(s, w), a). (1)

So γ(δ∗(start, w)) is the output of M in the state reached by following w
from M ’s initial state. Call fM(w) = γ(δ∗(start, w)) the representing function of
M .

If fM is the representing function of M , then f ′(w) = g(f (w)) represents
M ′ obtained by replacing γ with γ′(s) = g(γ(s)). The state set of M and
transition map remain unchanged.

Nerode[Arb68] showed that there is a construction of a Moore machine
M (f) from any f : A∗ → X via a left equivalence relation. Given f , say
w ∼ f u if and only if f (wz) = f (uz) for all z ∈ A∗. The relation ∼ f is readily
seen to be an equivalence relation. The set A∗ is partitioned by ∼ f into disjoint
classes of equivalent sequences: [w] f = {u : u ∼ f w, u ∈ A∗}. The set of these
equivalence classes A∗/ ∼ f= {[u] f : u ∈ A∗} can be the state set of M (f)
and the transition and output functions are given by δ f ([w] f , a) = [wa] f and
γ f ([w] f) = f (w).

M (f) = {A, X , A∗/∼ f , [λ] f ,δ f ,γ f }.

Since f (w) = γ f (δ∗f ([λ] f , w) by definition f is the representing function of
M (f).

Any M2 that has f as a representing function can differ from M1 =M (f)
only in names of states and by including unreachable and/or duplicative states.
That is, there may be some w so that δ∗1(start1, w) 6= δ∗2(start2, w) but since
w ∼ f w it must be the case that the states are identical in output and in the
output of any states reachable from them. If we are using Moore machines to

3

represent the behavior of digital systems, these differences are not particularly
interesting and we can treatM (f) as the Moore machine represented by f .

Say that f is finite if M (f) is finite state. While finite sequence func-
tions are the only ones that can directly model digital computer devices or
processes1, infinite ones are often useful in describing system properties.

2.2 Products

The product, which Gécseg [G8́6] calls a “general product" 2 connects factor
state machines so that the input to each factor is a function of the input to the
composite machine and the outputs of some or all of the factors (this is the
“feedback"). Pictorially, the Gécseg product is straightforward: n machines are
connected via n maps that determine communication among the machines.

-

?�

- -

-- -

-- -

6
M1

M2

Mn

h1

h2

h3

Feedback

-Input to product

Suppose we have a collection of (not necessarily distinct) Moore machines
Mi = (Ai, X i, Si, starti,δi,λi)(0 < i ≤ n) that are to be connected to construct
a new machine with alphabet A. The intuition is that when an input a is
applied to the system, the connection map computes a sequence of inputs for
Mi from the input a and the outputs of the factors (feedback). I have made

1There is a lot of confusion on this subject for reasons I cannot fathom, but processes
executing on real computers are not Turing machines because real computers do not have
infinite tapes and the possibility of removeable tapes doesn’t make any difference.

2 I’m using a slight modification.

4

the connection maps generate sequences instead of single events so that the
factors can run at non-uniform rates. If hi(a, ~x) = λ, then Mi skips a turn.

Definition 2.1 General product of automata
Given Mi = (Ai, X i, Si, starti,δi,γi) and hi : A× Πn

i=1Xn → A∗i for 0 < i ≤ n
define the Moore machine: M =A n

i=1[Mi, hi] = (A, X , S, start,δ,γ)

• S = Πn
i=1Si and start= (start1 . . . startn)

• X = {(x1 . . . , xn) : x i ∈ X i} and γ((s1 . . . , sn)) = . . .γi(si) . . .).

• δ((s1 . . . , sn), a) = (δ∗1(s1, h1(a,γ(s))) . . .δ∗n(sn, hn(a,γ(s)))).

Theorem 2.1 If each fi represents Mi and f (w, i) = fi(f ∗(w, i))
and f ∗(wa, i) = f ∗(w, i) ◦ hi(a, f (w, 1) . . . , f (w, n))
and f ∗(λ, i) = λ
and M =A n

i=1[Mi, hi] then f ′(w) = (f (w, 1) . . . , f (w, n)) represents M

Proof: Note that f (w, i) = fi(f ∗(w, i)) by definition and each fi represents
Mi so

fi(z) = γi(δ
∗
i (starti, z)) (2)

and what we have to show is that f ∗(w, i) is correct so that

δ∗(start, w) = (. . .δ∗i (starti, f ∗(w, i)) . . .) (3)

The theorem follows directly from 3 because: f ′(w) = (. . . f (w, i) . . .) = (. . . fi(f ∗(w, i)) . . .)
but γ(δ∗(st, w)) = γ(. . . (δ∗i (starti, f ∗(w, i)) . . .))
by the definition of M and 3 so
γ(δ∗(st, w)) = (. . .γi(δ∗i (starti, f ∗(w, i))) . . .)
= (. . . fi(f ∗(w, i)) . . .) = f ′(w).

Equation 3 can be proved by induction on w. Since f ∗(λ, i) = λ the base
case is obvious. Now suppose that equation 3 is correct for w and consider
wa.

Let δ(start, w) = s = (s1 . . . , sn) and let f ∗(w, i) = zi. Then, by the induc-
tion hypothesis si = δ∗i (starti, zi) and, by the argument above γ(δ(start, w)) =
f ′(w). So:
δ∗(start, wa) = (. . .δ∗i (δ

∗
i (start, zi), hi(a, f ′(w))) . . .)

= (. . .δ∗i (start, zi ◦ hi(a, f ′(w)) . . .)
= (. . .δ∗i (start, f ∗(wa, i) . . .)
proving 3 for wa.

5

3 Examples

This section begins with a variety of sequence functions defined using simple
primitive recursion and then shows how to define products.

3.1 Simple machines

Consider a single bit store machine over an alphabet A= {0, 1}.

B(λ) = 0 and B(wb) = b (4)

If we defined the storage state machine over an infinite alphaphet then it
would be infinite state. It’s trivial to create a store over any set.

Definition 3.1 For any set X and x0 ∈ X , say Y is a store over X with initial
value x0 if and only if:

Y (λ) = x0 and Y (wx) = x for x ∈ X (5)

It’s sometimes useful not to specify the initial state value if the device or system
needs to be first brought to a known state for proper use.

An unbounded counter

T (λ) = 0 and T (wa) = 1+ T (w) (6)

represents an infinite state machine but may be useful in specifying how a
finite state machine operates. A finite counter:

Tn(λ) = 0 and Tn(wa) = (1+ Tn(w))mod n (7)

A finite counter with explicit increment and decrement and reset operations
specified to ignore other inputs:

Cn(λ) = 0 (8)

Cn(wa) =







min(n, 1+ Cn(w)) if a = increment
max(0, Cn(w)− 1) if a = decrement
0 if a = reset
Cn(w) otherwise.

(9)

6

Given an alphabet A = {0,1} a bounded “shift-register" can be defined
recursively in a purely arithmetic way as:

Rn(λ) = 0 (10)

Rn(wa) = (2 ∗ Rn(w))mod 2n+ a (11)

Or we could expand the alphabet to A= {0, 1, reset} and define

R′n(λ) = 0 (12)

R′n(wa) =
�

(2 ∗ R′n(w)mod 2n+ a) if a ∈ {0, 1}
0 if a = reset; (13)

Both Rn and R′n are obviously finite state. Defining, En(w) = Rn(w)/2n−1 hides
the interior state of Rn and only outputs the highest order bit.

Let ~On be the n-bit tuple of all zeros. To make the bits visible define Sn

For n> 1

Sn(λ) = ~0
n (14)

Sn(wa) =







(a, b1, . . . bn−1) if a ∈ {0, 1}
and Sn(w) = (b1 . . . , bn)

~0n if a = reset;
(15)

For a vector ~b = (b1 . . . bn) let ~b[i] = bi indicate indexing. Consider
S′n(w) = Σ

n
i=12i−1 ∗ Sn(w)[i]. Note that S′n(λ) = 0 = S′(w ◦ 〈reset〉). And for

b ∈ 0, 1, S′(wb) = b+Σn−1
i=1 2i ∗Sn(w)[i] since Sn(w)[i] = Sn(wb)[i+1].Thus,

S′n(w) = R′n(w)

- -0 or 1 valueShift Register

A bounded queue can be defined to ignore pushes when it is full. If A =
{pop} ∪ {push[v] : v ∈ V} define:

Qn(λ) = () (16)

Qn(wa) =























() if Qn(w) = (v) and a = pop
(v1 . . . , v j−1) if Qn(w) = (v1 . . . v j) for some j > 1;

and a = pop;
(v1 . . . , v j, v) if Qn(w) = (v1 . . . v j) for some j < n;

and a = push[v];
Qn(w) otherwise;

(17)

7

3.2 Product machines

Since it is always the case here that f ∗(λ, i) = λ, I’ll just leave it implicit in
what follows.

The shift register defined above can be constructed as a product of simpler
machines – the bit store defined in equation 4.

Define G(w, i) = B(G∗(w, i)) (18)

G∗(w, 1) = w (19)

G∗(wa, i+ 1) = G∗(w, i+ 1) ◦ 〈G(w, i)〉 (20)

Define G′(w) = Σn
i=12i−1G(w, i) (21)

To see how the product works: G(wb, 1) = b since G∗(wb, 1) = wb and then
G(wb, 1) = B(wb) = b. And G(wb, i + 1) = G(w, i) since G∗(wb, i + 1) =
z ◦ 〈G(w, i)〉 for some z and if we let b = G(w, i) then G∗(wa, i+ 1) = zb.

G′(λ) = 0 since G(λ, i) = Bi(λ) = 0. Suppose G′(w) = Rn(w). Then con-
sider G′(wb) which is equal to Σn

i=12i∗G(wb, i) which is 20 b+21∗G(w, 2) . . .+
2n−1G(w, n) which is 2G′(w)mod 2n+ b. So G′(w) = Rn(w).

Note that the obvious realization of Rn is a state machine with 2n states
where γ(x) = x and δ(x , b) = 2 ∗ x mod 2n + b. But G replaces that with n
state state machines which each have 2 states, reducing the total number of
states to 2n. G′ just modifies the output map.

Construction of a queue from copies of a bit store and a counter can be
done using the counter to track how many elements are in the queue. Note
that there are three different alphabets: the queue alphabet of the product,
the alphabet of the counter and the bit store alphabet.

Let Y be a store overV
And Cn be as defined in equation 9

For 0< i ≤ n, Un(w, i) = Y (U∗n(w, i)) (22)

and Un(w, n+ 1) = Cn(U
∗
n(w, i+ 1)) (23)

where U∗n(wa, i) (24)

8

= U∗n(w, i) ◦











































〈v〉 if i = 1 and a = push[v]
and Un(w, n+ 1)< n

〈U(w, i− 1)〉 if 1< i ≤ n and a = push[v]
and Un(w, n+ 1)< n

〈Un(i− 1)〉 if i < n and a = pop
〈increment〉 if i = n+ 1 and a = push[v]

and Un(w, n+ 1)< n
〈decrement〉 if i = n+ 1 and a = pop
λ otherwise

(25)

Now put Size(w) = Un(w, n+ 1) and define NQ(w) = () if Size(w) = 0
and NQ(w) = (Un(w, 1) . . . Un(w, Size(w))) otherwise. Showing that NQ(w) =
Qn(w) is straightforward.

4 More on representation and some algebra

A number of results follow from theorem 2.1.

Theorem 4.1 For M and f constructed as products as above in theorem 2.1.

• There are an infinite number of distinct products M ′ =A k
i=1[Ni, gi] so that

f represents M ′ as well as M.

• If all of the Mi are finite state, M is finite state (by construction).

• If all of the fi are finite state, f is finite state (since it represents a finite
state Moore machine).

• If f is finite state then there is some M ′ =A k
i=1r[Zi, gi] where f represents

M ′ and each Zi is a 2 state Moore machine. In fact k = dlog2(|SM ′ |)e. This
is simple binary encoding.

Theorem 4.2 If g has a finite image and each fi is finite state and F(λ) = x0

and: F(wa) = g((F(w), f1(w), . . . fn(w)), a)
then F is finite state

Proof. Let X be the image of g and define T (λ) = x0 and T (wx) =
x . Clearly, T is finite state if its alphabet is restricted to X . Define E =
∏n+1

i=1 [f
′

i , hi] so that f ′i = fi for i ≤ n and fn+1 = T . Let hn+1(~y , a) = g(~y , a)
and let hi(~y , a) = 〈a〉 for i < n+1. Since E(w)n+1 = F(w) and E must be finite
state, the result follows.

9

4.1 Monoids

If f : A∗ → X then say w ≡ f u iff f (zw y) = f (zuy) for all z, y ∈ A∗. Then
A∗/ ≡ f is a monoid under the operation of concatenation of representative
elements. Let [w]/ f = {u ∈ A∗, u ≡ w}. Then define [w]/ f · [z]/ f = [wz]/ f .
The set of these classes with · is a monoid where [w]/ f · [λ]/ f = [w]/ f for the
required identity.

Suppose f (w, i) is defined from f1 . . . , fn so that G∗(wa, i) = G∗(w, i)zi

where zi only depends on the feedback from factors indexed by j < i. That
is, there are r1 . . . rn so that zi = r1(a) and zi+1 = ri(a, f (w, 1) . . . f (w, i − 1)).
In this case f is constructed in cascade where information flows only in one
direction. The function G defined above by equation 18 is an example of such
a system. In this case the results of Krohn-Rhodes theory[Hol83, Gin68] will
apply: and Rn can be reduced to a cascade product of flip-flops because the
monoid induced by ≡Rn

is “group free".
Consider Cn defined in equation 9. If n= 2k then C2’s.

Gn(w, i) = C2(G
∗(w, i)) (26)

G∗(wa, 1) = D2(wa) (27)

G∗(wa, i+ 1) =

¨

〈a〉 if Π j<i
j=1G(w, j) = 1

λ otherwise
(28)

This is called a “ripple carry adder" in digital circuit engineering: each counter
increments only if the “carry" is propagating through all lower order counters.
Note that Gn is a cascade and that Gn counts properly if and only if n = 2k for
some k > 1. Otherwise, the underlying group of Cn has simple group factor
and those cannot be factored into smaller elements without some feedback.

References

[Arb68] Michael A. Arbib. Algebraic theory of machines, languages, and semi-
groups. Academic Press, 1968.

[G8́6] Ferenc Gécseg. Products of Automata. Monographs in Theoretical
Computer Science. Springer Verlag, 1986.

[Gin68] A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.

10

[Hol83] W.M.L. Holcombe. Algebraic Automata Theory. Cambridge University
Press, 1983.

11

