
Reducing Process Algebra

Victor Yodaiken
Copyright 2009,2010.∗

yodaiken@finitestateresearch.com

May 7, 2010

Abstract

Milner’s ”process algebra” is given a semantics in terms of deter-
ministic state machines.

1 Introduction

The following incorrect claim is not unusual in the process algebra literature.

Basically, what is missing [in classical automata theory] is the no-
tion of interaction: during the execution from initial state to final
state, a system may interact with another system. This is needed
in order to describe parallel or distributed systems, or so-called
reactive systems. When dealing with interacting systems, we say
we are doing concurrency theory, so concurrency theory is the
theory of interacting, parallel and/or distributed systems.[Bae05]

Actually a sophisticated notion of state machine product was developed
for representing composition of “interacting” state machines starting in the
1950s[HS66]. A general survey can be found in a monograph by Gecseg[Gec86],
Domoni provides a more modern, more algebraic treatment [DN04] and
[Yod09] provides practical techniques for construction of complex products.

∗Permission granted to make and distribute complete copies for non-commercial use
but not for use in a publication. All other rights reserved but fair use encouraged as long
as properly cited.

1

yodaiken@finitestateresearch.com


In this note, I show how deterministic state machines machines modeling
“process-algebra like” systems such as Milner’s original formulation[Mil79]
can be defined and how to define constructions that emulate the process
order constructors a.P and P + Q and P |Q and P \X. For every “rule” of
the form P

a−→ P ′ ⊢ Q
a−→ Q′ we will have a provable statement for the form

“P enables a and after a P behaves like P ′”. The very triviality of these
results illustrates something about the process algebra.

The reader familiar with the process algebra literature will note that such
an effort must find a way to model the non-determinism that is so funda-
mental to the process algebra world-view. Since deterministic programs are
used to produce pseudo-random number sequences and to model Brownian
motion and even the stock market (perhaps not the best example at this
date) the problem is easier to solve than it appears at first. Section 4 will
include a short discussion on the difference between “real” non-determinism
and simulated non-determinism, but certainly there is nothing in the basic
axiom set of Milner’s original process algebra that notices this distinction as
far as I can see.

Section 2 sketches the emulation in terms of traditional state-set presen-
tations of state machines and introduces fake non-determinism. Section 2.2
adds concurrent composition. Section 3 then makes everything precise in
terms of string functions, which simplify the treatment of composition. And
section 4 includes a short discussion on the meaning of it all.

2 State machines and process algebra pro-

cesses

The purpose of this section is to build some intuition in the familiar grounds
of state machines as sets of states with transition and output maps.

2.1 Outputs and faking non-determinism

The classical definition of a Moore type state machine is a 6-tuple:

M = (A,X, S, start, δ, γ)

where A is a set of inputs, X is a set of outputs, S is the set of states,
start ∈ S is the start or initial state, δ : S×A → S is the transition function,

2



and γ : S → X is the output function. It is usual to require A and S to be
finite, but I am not doing that since process algebra does not embrace that
limitation of actual computing devices and programs.

Let A be the universal set of transitions for a collection of process algebra
processes. The output of a state machine emulating a process algebra process
will be the set of enabled inputs. An output of ∅ means the process is stuck.
Let R be an alphabet of “random seeds” that we can adjoin to the original
universal input alphabet A and say M is R pseudo-random if the initial input
forM can be any element of R, that is if δM(start, r) is defined for every r ∈ R
where start is the initial state of M . The extent of non-determinism can be
varied by varying the cardinality and complexity of R. For example, if R is
the set of real-numbers, then R injects a robust ℵ1 pseudo-randomness into
M . Consider the events in R to be “start up” events.

Definition 2.1 M = (A,X, S, start, δ, γ) is a process algebra compatible
state machine with input alphabet A and random seed alphabet R iff δ(s, a)
is complete (defined on all pairs of arguments) and

γ(start) = R (1)

If s ̸= start then γ(s) ⊂ A (2)

We can now take an example from Milner’s text and represent it as de-
terministic state machine — albeit awkwardly. A cleaner formulation with
string functions is in section 3. To explain non-determinism, Milner[Mil79]
asks us to suppose we have two devices D1 and D2, so that when powered
up D1 has a possible a action followed by a choice of a b or c action. The D2

device starts the same, but after the a action D2 may non-deterministically
enable both b and c or only c.

We do not know what determines the outcome for [D2], perhaps
it is the weather[Mil79]

In this case, we have two state machines D1 and D2 and we know that

∀r ∈ R[γ1(δ(start1, r) = {a} = γ2(δ2(start2, r))]

and
∀r ∈ R[γ1(δ1(δ2(start1, r), a)) = {b, c}]

∀r ∈ R[γ2(δ2(δ2(start1, r), a)) ∈ {{c}, {b, c}}]

3



2.2 Concurrency

Following Milner suppose there is a matching function on A that associates
each a ∈ A with a unique ā ∈ A. For convenience suppose ¯̄a = a. The
intuition is that a and ā are opposite sides of a communication. When we
compose two process algebra processes P1 and P2 to get some P = (P1|P2)
the intuition is that an input can either advance one of the two components
or can advance both via matching inputs. The second case can only happen
if the input applied to the composed process is the special input τ .

Suppose P1 and P2 are process algebra compatible and we want to con-
struct P1|P2 as a state machine. In order to emulate composition we actually
connect three state machines P1, P2 and some Z which acts as a scheduler.
The state machine Z is not process algebra compatible but it makes the
implicit scheduling that is part of process algebra composition into explicit
scheduling. Let’s step back an consider automata interconnection in a more
general setting.

The “general product” connects a collection of state machines together
via a “connection map”. When an input a is applied to the product, the
connection map computes a sequence (possibly a null sequence) of inputs for
each component from a and from the outputs of some (or none or all) of
the components. Suppose that M1 . . .Mn have been connected in this way.
Then the states of the composite system are vectors s⃗ = (s1 . . . sn) where
each si ∈ Si is a state from the state set of Mi. The output of this machine is
a vector x⃗ = (x1 . . . xn) where each xi = γi(si) is the output produced by the
output map γi of Mi when applied to the state element si. The components
are connected by a connection map ϕ so that when a is applied to the product,
each component Mi is advanced by the sequence of inputs ϕ(a, i, x⃗) where x⃗
is the output of the current state. If we want the state of component i to
remain unchanged, we can make ϕ(a, i, x⃗) = ϵ where ϵ is the empty string.

If we connect M1 and M2 which are emulating process algebra processes
and the respective outputs in the current state are x1 and x2, then an input
a is enabled only if it is enabled by at least one of the two components or if
a = τ and there is an enabled matching pair input. Define

Enabled(x1, x2) =

{
x1 ∪ x2 ∪ {τ} ∃b ∈ x1 s.t. b̄ ∈ x2;
x1 ∪ x2 otherwise.

If a is enabled and applied to a product containing state machines P1 and
P2 then:

4



• If a ∈ R then ϕ(a, i, x⃗) = ⟨r⟩ (just pass the random seed along).

• If a ∈ A then either:

– a ∈ x1 and ϕ(a, 1, x⃗) = ⟨a⟩ and ϕ(a, 2, x⃗)) = ϵ.

– OR a ∈ x2 and ϕ(a, 2, x⃗) = ⟨a⟩ and ϕ(a, 1, x⃗)) = ϵ.

• If a = τ then for some b ∈ A, ϕ(a, 1, x⃗) = ⟨b⟩ and ϕ(a, 2, x⃗) = ⟨b̄⟩ and
b ∈ x1 and b̄ ∈ x2.

And that’s pretty much it — except for what to do if more than one of these
options is true or if there are more than a single pair of matching enabled
transitions. We could put the choice in ϕ, but that would violate the spirit
of the process algebra composition — which may allow different choices in
the same configuration. That’s why we need Z which has totally unspecified
operation but introduces an additional state component that may modify
how ϕ operates. To make this all precise in a more compact format, I’ll turn
to string functions.

3 String functions

Each state machine M determines a map from strings to outputs that is
more convenient for our purposes than the tuple-of-sets-and-functions form.
Let A∗ be the set of finite strings over A including the empty string ϵ and
if w ∈ A∗ then let wa ∈ A∗ be the string obtained by appending a to w.
Then extend δ to strings by δ(s, ϵ) = s and δ(s, wa) = δ(δ(s, w), a)). Mildly
abusing notation, let M(w) = γ(δ(start, w)). Then M(w) is the output of M
in the state reached by following w from the initial state.

Let q · w indicate that string w is to be concatenated onto the right side
of string q.

Suppose M1, . . .Mn are state machines. A product M is constructed from
an appropriate connection map ϕ by:

M(w) = (M1(w1(w)) . . . ,Mn(wn(w))) (3)

where wi(ϵ) = ϵ (4)

and wi(wa) = wi(w) · ϕ(i, a,M(w)) (5)

5



It can be shown that this definition corresponds to the general product,
that if all of the factors are finite the product will also be finite. A more
detailed exploration of this method can be found in [Yod09].

Let rw indicate the string obtained by appending r to string w on the
left. Compare the following to definition 2.1.

Definition 3.1 A state machine M is pseudo-random process algebra com-
patible for random input set R and input alphabet A iff

∀r ∈ R,M(ϵ) = R (6)

∀r ∈ R,w ∈ A∗,M(rw) ⊂ A (7)

Definition 3.2 A product M = (M1(w1(w)),M2(w2(w)), Z(w)) with alpha-
bet A and random seeds R is process algebra composition compatible iff

M1 and M2 are process algebra compatible (8)

and for xi = Mi(wi(w)), wi(w) = qi and wi(wa) = qi · zi (9)

If a ∈ Enabled(x1, x2) then

a ∈ R and zi = ⟨r⟩ (10)

or a ∈ x1 and z1 = ⟨a⟩ and z2 = ϵ (11)

or a ∈ x2 and z2 = ⟨a⟩ and z1 = ϵ (12)

or a = τ and z1 = ⟨b⟩ and z2 = ⟨b̄⟩ for b ∈∈ x1 and b̄ ∈ x2 (13)

3.1 Constructors and proofs

The constructors of process algebra can now be defined as operations on
process algebra compatible state machines.

• Given P , define P ′ = a.P by P ′(r) = {a} and P ′(raw) = P (rw).

• The “restriction” requires primitive recursion on strings:

(P \H)(ϵ) = P (ϵ) \H (14)

(P \H)(wa) =

{
P (wa) \H if a ∈ (P \H)(w)
not defined otherwise

(15)

6



• Relabeling is straightforward:

(P [f ])(w) = P (f ∗w) where f ∗ϵ = ϵ, f ∗(wa) = (f ∗w)f(a)

• Summation is a constraint with many potential solutions. Given P1

and P2, say Q is a solution to (P1+P2) if and only if each random seed
“chooses” one Pi and each Pi is chosen by at least one random seed:

∀r ∈ R, ∃i ∈ {1, 2} s.t. ∀w ∈ A∗Q(rw) = Pi(rw) (16)

and ∀i ∈ {1, 2}∃r ∈ R s.t. ∀w ∈ A∗Q(rw) = Pi(rw) (17)

• Composition is easy. Given P1 and P2, say Q is a solution to (P1|P2)
if:

Q(w) = Enabled(P1(w1(w)), P2(w2(w))) (18)

where M(w) = (P1(w1(w)), P2(w2(w)), Z(w))

is a process algebra compatible product

for some state machine Z (19)

Say rw is a permitted behavior of P if every input was enabled.

Permitted(r, P ) = TRUE,(20)

Permitted(rwa, P ) =

{
TRUE if Permitted(rw, P ) and a ∈ P (rw);
FALSE otherwise.

(21)

The accepted language of P is then L(P ) = {rw : r ∈ R,w ∈ A∗, P ermitted(rw, P )}.
The process algebra assertion P

a−→ P ′ means that P can make an a transi-
tion and then it will behave just like P ′. More formally, ∀rw ∈ L(P ′)P (raw) =
P ′(rw) The “rules” of Process algebra are then just assertions about permit-
ted strings.

• a.P
a−→ P means ∀rw ∈ L(P ), (a.P )(raw) = P (rw).

• Suppose Pi
a−→ P ′

i , then let Q be a solution to P1 + P2, and it follows
immediately that for at least one r,∀rw ∈ L(Pi), Q(rw) = Pi(rw) and
since au ∈ A∗, Q(rau) = P ′

i (ru). so let w = au to get Q(rau) =
Pi(rau) = P ′

i (rw).

• Suppose P1
a−→ P ′

1 , then let Q be a solution to P1|P2. We want to prove
that Q

a−→ Q′ where Q′ is a solution to (P ′
1|P2). But this follows from

the construction.

7



4 Critique

What exactly is meant by the behavior of nondeterministic or con-
current programs is far from clear[MM85]

From the point of view of automata theory, the “rules” of process algebra
appear weak. That is, tools for showing that a single initial step from pro-
cess P causes future steps to appear as if they were from process P ′ seems
hardly adequate for illuminating the behavior of systems that take many
steps. The model of concurrency seems much too dependent on an artifact of
early “threaded”programming languages and communication as synchronous
exchange is limiting.

The exercise also shows some differences in perspective. In process al-
gebra, one might say ”when I run this concurrent program twice I get two
different results because the program is intrinsically non-deterministic”. In
automata theory we can say ”we get two different results because the deter-
ministic program is not completely specified and depends on inputs from the
environment.” In process algebra, concurrency is the interleaving of processes
via non-deterministic choice. In automata theory, the process algebra type of
concurrency corresponds to a restriction of parallel products with a limited
type of feedback.

Another issue is non-determinism. Non-determinism is a peculiar prop-
erty to consider fundamental given the effort put into engineering computing
devices to be deterministic. Even non-determinism in threading can be con-
sidered harmful[MOA09, Lee06]. As a tool for avoiding complexity in spec-
ifications, non-determinism may be justifiable on pragmatic grounds, given
positive results. But one would have a hard time showing that process algebra
has met such a test. In fact, the initial decision to drop “classical automata”
as a basis is worth a revisit. “Classical automata” do not share the lack of
clarity that Hennessy noted in the citation above and they have a strong
mathematical connection to the study of semigroups[Arb69, Hol83]. Given
that communication and interaction even in the rather complex approach
taken in the process algebras can, as demonstrated above, be expressed com-
pletely within the domain of deterministic automata, the decision to create
a new and more syntactic model seems poorly motivated.

8



References

[Arb69] Michael A. Arbib. Theories of Abstract Automata. Prentice-Hall,
1969.

[Bae05] J. C. Baeten. A brief history of process algebra. Theor. Comput.
Sci., 335, 2-3:131–146, May 2005.

[DN04] Pal Domosi and Chrystopher L. Nehaniv. Algebraic Theory of
Automata Networks (SIAM Monographs on Discrete Mathematics
and Applications, 11). Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 2004.

[Gec86] Ferenc Gecseg. Products of Automata. Monographs in Theoretical
Computer Science. Springer Verlag, 1986.

[Hol83] W.M.L. Holcombe. Algebraic Automata Theory. Cambridge Uni-
versity Press, 1983.

[HS66] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of
Sequential Machines. Prentice-Hall, 1966.

[Lee06] Edward A. Lee. The problem with threads. Computer, 39(5):33–
42, May 2006.

[Mil79] R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer Verlag, 1979.

[MM85] Hennessy M. and R. Milner. Algebraic laws for nondeterminism
and concurrency. J. ACM, 32, 1:137–161, January 1985.

[MOA09] Jason Ansel Marek Olszewski and Saman Amarasinghe. Kendo:
Efficient deterministic multithreading in software. In Proceed-
ings of ASPLOS‘09: The International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
Washington DC, USA, March 2009.

[Yod09] Victor Yodaiken. Primitive recursive presentations of automata
and their products. CoRR, abs/0907.4169, 2009.

9


