
Notes on modularity in digital systems and

programs

Victor Yodaiken
FSResearch LLC

@vyodaiken Twitter
http://www.yodaiken.com

February 9, 2016

Abstract

The structure of state machines reveals why modularity is such a
key design advantage in programming and computer engineering, why
it is so difficult, and how false modularity works.

1 Introduction

Modularity is a desirable but elusive design property for large scale programs
and computer systems [7, 1]. Designs that look modular may, once put into
practice, actually turn out to be not modular because of interdependencies
between components. For example, the apparently modular architecture of
micro-kernel operating systems [5] runs into practical difficulties [2]. Ex-
amining how state machines can be constructed by connecting simpler state
machines together, provides some insight into why real modularity is so pow-
erful and how to avoid false modularity. In this paper, I’m going to sketch
out how to look at modularity from the perspective of state machines, try to
derive a few “rules of thumb”, and point to some of the deep mathematical
basis of this method.

2 State machines and modularity

In principle any digital computing system can be represented as a deter-
ministic finite state machine1. Factoring a state machine into components

1This is weirdly controversial because of some conventional wisdoms about non-
determinism, communication, and parameters that are too tedious to discuss.

1

then corresponds to breaking the original system into modules. The power
of modularity then is apparent from arithmetic. A network of n connected
state machines each with Ji states can be “multiplied out” into a single
state machine that has Πn

i=1Ji states. If a state machine requiring 232 states
can be implemented by connecting 4 state machines of 256 states each, the
total system may still have 4 billion or so states, but each component is
fairly simple. False modularity pops up when such division just displaces
the complexity to the interconnection. Such systems violate the principle of
“information hiding” that Parnas[7] identifies as the basis of modularity.

In principle, any state machine with n states can be divided into a net-
work of machines of 2 states each with dlog2 ne machines in the network.
These “bit” machines encode the states of the original machine. At each
step, each “bit” machine accepts an input that includes a bit from every
component so that it can decode the state of the composite state system.
In this case, the entire system state is broadcast to every component on
each step. This is the limiting case for false modularity and gives a sense
of what properties we need to look for in evaluating designs and in making
sure interconnection schemes make sense. False modularity arises when we
factor a system into components that have to share too much state infor-
mation with each other. True modularity comes from a factorization that
exhibits low bandwidth communication. That is the information communi-
cated should be small compared to the state sizes of the components and it
should perhaps be otherwise constrained.

3 Wave hands at the algebra

The relationship between automata and semigroups has been known of since
the 1950s. A semigroup is just a set plus an associative binary operation.
A semigroup is a monoid if it has an indentity element. It is a group if
each element has an inverse. Think of each string over the event alphabet
of a state machine as a map from states to states. The set of maps un-
der composition is a semigroup. That semigroup is a monoid if we include
the map on states given by empty string - which takes each state to itself.
If the state set is finite, the monoid is necessarily finite as well. In the
early 1960s, it was discovered that a certain product of semigroups called
a cascade (or wreath) corresponded to a ”loop-free” product of state ma-
chines – where information flows in a uni-directional stream between state
machines[3]. The Krohn-Rhodes theorem (see [6] for a recent survey or [4]
for details.) connected these semigroup products to the subgroup structure

2

of groups. As a result, it appears that algebraic structure of semigroups and
groups is related to the design of computer systems in terms of connected
components.

4 Factoring

To build some intuition, consider how to factor fifo-queues. These ubiquitous
data structures are over-used as examples, but in this case they provide
startlingly clear indication of what group theory has to do with modularity.

Figure 1: Queue

A fifo-queue state ma-
chine accepts inputs to en-
queue elements and dequeue
them in a first-in-first-out
(fifo) order. An input enq[v]
should put v onto the end
(tail) of the queue and an
input deq should remove
the first element (head) of
the queue. If the queue
has maximum length K and
contains elements from a set
of J items then there are ΣK

i=0J
i possible states. Even for small K and

J this is a large number. Suppose we have a queue of 8 bit bytes with
maximum length 20 then there are more than 1048 states. But from pro-
gramming we know we can build this queue from an array of K memory
cells each of which has J states and two additional memory cells that
have K states each to act as counters. Number the array from 0 to
K − 1 and call one of the additional cells ”Size” and the other ”Head”
and make them both initially be 0. Suppose Size holds r and Head holds
m. If r = k an enq[v] will be ignored and if r = 0 a deq will be ig-
nored. Otherwise enq[v] will store v into array element (r + m) mod K.
In code it looks something like this.

enq(v){ if(Size < K)then {

array[(Size+ Head) mod K]:= v;

Size := Size +1 ;

}

}

deq() { if(Size > 0) then{

3

Temp:=array[Size+Head];

Head := Head+1 mod K

Size := Size -1;

}

return Temp

}

Note that there are K ∗ J states for the array elements and 2K + 1 for the
two counters 20 ∗ 256 ∗ 41 is a lot less than 1048. And note that there’s
not all that much communication needed between components. The cells in
the array get values from the system input and one is connected to system
output on a deq and Head and Size need to communicate, but only whether
the queue is full or empty or neither.

Figure 2: Factored Queue

So we took the
original state ma-
chine and implemented
the same functional-
ity via k + 2 sim-
pler machines that
are interconnected.
Two of the state ma-
chines are counters
which, as we’ll see
below, means that
they correspond to
cyclic groups. The
other state machines

have simple state graphs: an input v changes the state to v, no matter what
the current state. These state machines are called group-free or counter free
state machines. The communications between the machines are nicely lim-
ited. The counters never need to know the contents of the stores. The stores
only need to know whether the input is enq[v] AND tail points to them AND
size < k. The head counter needs to know the input and whether size < k
or size > 0.

Note that information flows in a “cascade” from left to right in this
network of machines.

As a second example, consider a n bit binary adder. Inputs are reset
and ~b for any binary n-tuple ~b. States are all the binary n-tuples. Let
unsigned(~b) = Σn

i=1
~bi ∗ 2i−1 where the tuple is numbered 1 . . . n. The input

4

h

Figure 3: Queue cascade

reset moves to the state ~b so that unsigned(~b) = 0 While in state ~s an input
~b goes state ~s′ so that unsigned(~s′) = unsigned(~s) + unsigned(~b′) mod 2n.
From engineering practice we know we can factor this 2n state machine into
n machines of 2 states each. And we know that the communication com-
plexity builds from lower order to higher order with each machine needing
the outputs of all ”lower order” bits.

Let’s now consider an ordered or sorted queue — something that is
often implemented by more complex data structures such as trees. The
number of states of the brute force version of an ordered queue is smaller
than the number of states of the fifo-queue because every ordered queue
state is a fifo-queue state, but many fifo-queue states are not ordered. For
example (100, 101, 99, 5, 80) is a disordered list that would not be a state of
the sorted queue. The smaller state set, however, comes with a more complex
operation: we don’t just append new items to the end of the queue, they
have to be inserted in place.

In this case, a simple counter is not going to suffice but we can again
separate the control information from the storage of elements. The control
information can be kept by a machine which maintains an ordered list of
indexes while data is stored in memory cells as in the fifo-queue. Let’s
assume that the deq operation is intended to remove the “greatest” element
from the queue — making it the “least” element would be an easy change.
If the storage elements are numbered 1 . . . k, then we can keep all ordering
information in a list

(i1 . . . , ir, 0, j1 . . . jd)

where r + d = k and the elements to the left of 0 indicate storage elements
in use, each one greater than or equal to its left neighbor. The elements to
the right of 0 are unused or free. When an element is inserted in the queue,

5

we want to swap 0 with the index to its right and then keep swapping left
until the list is ordered correctly again. A deq operation just swaps 0 with
the head of the queue — the element to just to the left of 0. Each operation
then permutes the list. Storage element i accepts a new value v when the
input is enq[v] and the element to the right of the 0 is i.

This decomposition is not as simple as the fifo-queue decomposition be-
cause there is some feedback. On deq, the control machine just swaps 0 and
the element to its left, freeing the head element. But on enq the control
machine needs to know where to put the index to the right of the 0 marker
and that depends on a single bit of information from each of the allocated
storage locations – the result of comparing the new value to the current value
stored in the location. Because Krohn-Rhodes bridged automata studies to
group theory, the “loop-free” uni-directional connections implicated in cas-
cade products became the focus of algebraic automata theory, but I’m not
sure that was a great idea. In many cases, 1 bit per storage cell is not much
of an interconnection burden and certainly it could be implemented in ways
to reduce the communication overhead in practice. To me, the decision to
exclusively focus on the loop-free decomposition was an error. The kind of
decomposition sketched here is interesting in itself and it turns out the type
of permutation group determines whether the permutation machine itself
can be further factored using loop-free factorization.

Finally, consider a queue in which ordering is determined by input. In-
stead of enq[v], our inputs can be enq[p, v] where p is the position of the
insertion point. So enq[1, v] puts v at the head of the queue and enq[4, v]
inserts v in position 4. In this case, we have exactly the same components
as the ordered queue, but we eliminate the feedback since the permutation
depends entirely on the p input.

References

[1] Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas. A
procedure for designing abstract interfaces for device interface modules.
In Proceedings of the 5th International Conference on Software Engi-
neering, ICSE ’81, pages 195–204, Piscataway, NJ, USA, 1981. IEEE
Press.

[2] Kevin Elphinstone and Gernot Heiser. From l3 to sel4 what have we
learnt in 20 years of l4 microkernels? In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,
pages 133–150, New York, NY, USA, 2013. ACM.

6

[3] J. Hartmanis. Loop-free structure of sequential machines. In E.F. Moore,
editor, Sequential Machines: Selected Papers, pages 115–156. Addison-
Welsey, Reading MA, 1964.

[4] W.M.L. Holcombe. Algebraic Automata Theory. Cambridge University
Press, 1983.

[5] Jochen Liedtke. Toward real microkernels. Commun. ACM, 39(9):70–77,
September 1996.

[6] Oded Maler. Time for verification. chapter On the Krohn-Rhodes Cas-
caded Decomposition Theorem, pages 260–278. Springer-Verlag, Berlin,
Heidelberg, 2010.

[7] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, December 1972.

7

