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Realtime versus Time Shared

� Time sharing software: switch between
different tasks fast enough to create the
illusion that all are going forward at once.

Realtime software: switch between different
tasks in time to meet deadlines.
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Hard realtime

1. Predictable performance at each moment in
time: not as an average.

2. Low latency response to events.

3. Precise scheduling of periodic tasks.
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Soft realtime

� Good average case performance

� Low deviation from average case
performance
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Traditional problems with soft
realtime

� The chips are usually placed on the solder
dots.

The machine tool generally stops the cut as
specified.

The power almost always shuts off before the
turbine explodes.
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New problems with soft realtime

� The voice-over-IP system only loses packets
under stress.

The cell-phone connect won’t drop your
Internet handset during a handoff unless
there is heavy traffic.

If you start a browser on one machine, most
of the time sales transactions won’t get lost
on the other side of your SOHO router.
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You don’t really need hard
realtime

� We have one failure every 100 hours of
operation on the average, but some
customers experience 5 failures in an hour.

Tell ’em to stop being such whiners.

Poor performance? More memory and a
faster processor!

What’s wrong with quad Itaniums, 8 Gig of
memory, and a liquid cooling system on a
$100 SOHO router?
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Hard realtime is needed

1. If "rare" timing failures are serious.

2. If precise timing makes a process possible.

3. If precise timing makes a performance
advantage.
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Timing

1. A 30 microsecond delay can drop 20 Gig
Ethernet packets.

2. 10 70hz video streams need packets
unloaded at millisecond rates.

3. Time for 1 degree error on manipulator: 10
microseconds.
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Low end examples.

1. Replace a digital joystick with an analog
joystick and a sound card.

2. Reduce control loop times by sampling A/D at
100 microseconds.

3. Log data over the network using Linux utilities
with no software development costs.

4. Use Apache standard web server as a control
interface – with no software development
costs.
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Larger examples.

� Multiple software "Virtual routers" operating
on packets in realtime.

� Interactive robot control with non-RT
graphical interface.
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The RTLinux operating system

A small hard realtime operating system that runs
Linux (or BSD) as its lowest priority task. Used
for everything from making chain-saw chains, to

switching packets to animating movies.
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One view of RTLinux
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Another view of RTLinux
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RTLinux is decoupled from Linux

RTLinux schedules itself — Linux scheduler is
not involved.

Linux cannot delay or interrupt execution of
RTLinux
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Results

1. Example on AMD SC520 133Mhz.

� Low latency response to events.
15microseconds or less.

� Precise scheduling of periodic tasks. 20
microseconds or less error.

2. On a standard PC: 19 microseconds and 50
microseconds

3. On SOCs we are in the single digits
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Programming model

1. For Realtime tasks and event handlers:
POSIX Pthreads.

2. For Linux processes connection via POSIX
I/O, shared memory, and signals.

As standard as possible with no efficiency loss.
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Programming view

1. The hard realtime component of realtime
applications should run in a simple, minimal,
predictable environment.

2. The non-realtime components should run in
UNIX until something better is invented.

3. Hard realtime and non-realtime should be
decoupled in operation.
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Programming interface

1. "Lean" POSIX threads for RT components,
standard POSIX for non-RT components.

2. RTLinux can support alternate APIs.

3. API is programmer convenience: not
technology fundamental.

RTLinux – p.20/33



A typical simple application
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The simplest user side data
logging program

cat < /dev/rtf0 > logfile

RTLinux – p.22/33



How to use RTLinux
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Where is it used?

1. Communications: PBX’s, routers, ...

2. Factory automation: machine tools,
production lines.

3. Robotics: stepper motors, A/D, ...

4. Multimedia: animations, ...
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RTLinux Version 3.0

1. V1 was a research project.

2. V2 was the first production version.

3. V3 is the first industrial strength version. x86,
Alpha, PPC, MIPS, smp support, ...

4. V4 on the way.
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But why not integrate RT into
Linux?

� Experience shows: performance limits and
engineering costs.
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Why is decoupling so important?

1. Mars Lander almost broke because a low
priority non-realtime process was able to lock
a resource needed by a critical realtime task.
The lock was hidden in complex code shared
by all tasks, realtime and non-realtime.

2. RTLinux makes all interactions between RT
and non-RT explicit and transparent .
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The RTLinux technical synergy.

1. Highly efficient realtime.

2. Connected to a reliable and powerful
networked operating system (Linux).

3. Running on standard PCs, servers, and
embedded hardware.
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The RTLinux cost advantage.

1. The costs of maintaining general purpose
software – data bases, networks, graphics,
development, ... – are shared with server and
desktop companies.

2. Prototype on PCs.

3. Access to source is essential for important
applications.

RTLinux – p.29/33



Coming in V4

1. RT networking. (for industrial control and
comms).

2. User mode RTLinux functions.

3. Failover technologies.

4. Optimizations.
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Finite State Machine Labs

1. Core kernel development and GPL and
non-GPL RTLinux distributions.

2. Training, engineering services and product
support.

3. Application software in communications and
factory automation.

RTLinux – p.31/33



Why non-GPL development

1. Some of our customers need it: niche
products or close hardware/software
interaction is common in embedded.

2. We need it: we cannot pay for development
on contract services.

3. Our non-GPL is source to customers, but no
rights to remarket our code.
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w.fsmlabs.com@
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