
RTLinux
and embedded programming

Victor Yodaiken

Finite State Machine Labs (FSM)

RTLinux – p.1/33

Outline.

� The usual: definitions of realtime.

Who needs realtime?

How RTLinux works.

Why RTLinux works that way.

Free software and embedded.

RTLinux – p.2/33

Outline.

� The usual: definitions of realtime.

� Who needs realtime?

How RTLinux works.

Why RTLinux works that way.

Free software and embedded.

RTLinux – p.2/33

Outline.

� The usual: definitions of realtime.

� Who needs realtime?

� How RTLinux works.

Why RTLinux works that way.

Free software and embedded.

RTLinux – p.2/33

Outline.

� The usual: definitions of realtime.

� Who needs realtime?

� How RTLinux works.

� Why RTLinux works that way.

Free software and embedded.

RTLinux – p.2/33

Realtime versus Time Shared

� Time sharing software: switch between
different tasks fast enough to create the
illusion that all are going forward at once.

Realtime software: switch between different
tasks in time to meet deadlines.

RTLinux – p.3/33

Realtime versus Time Shared

� Time sharing software: switch between
different tasks fast enough to create the
illusion that all are going forward at once.

� Realtime software: switch between different
tasks in time to meet deadlines.

RTLinux – p.3/33

Hard realtime

1. Predictable performance at each moment in
time: not as an average.

2. Low latency response to events.

3. Precise scheduling of periodic tasks.

RTLinux – p.4/33

Soft realtime

� Good average case performance

� Low deviation from average case
performance

RTLinux – p.5/33

Traditional problems with soft
realtime

� The chips are usually placed on the solder
dots.

The machine tool generally stops the cut as
specified.

The power almost always shuts off before the
turbine explodes.

RTLinux – p.6/33

Traditional problems with soft
realtime

� The chips are usually placed on the solder
dots.

� The machine tool generally stops the cut as
specified.

The power almost always shuts off before the
turbine explodes.

RTLinux – p.6/33

Traditional problems with soft
realtime

� The chips are usually placed on the solder
dots.

� The machine tool generally stops the cut as
specified.

� The power almost always shuts off before the
turbine explodes.

RTLinux – p.6/33

New problems with soft realtime

� The voice-over-IP system only loses packets
under stress.

The cell-phone connect won’t drop your
Internet handset during a handoff unless
there is heavy traffic.

If you start a browser on one machine, most
of the time sales transactions won’t get lost
on the other side of your SOHO router.

RTLinux – p.7/33

New problems with soft realtime

� The voice-over-IP system only loses packets
under stress.

� The cell-phone connect won’t drop your
Internet handset during a handoff unless
there is heavy traffic.

If you start a browser on one machine, most
of the time sales transactions won’t get lost
on the other side of your SOHO router.

RTLinux – p.7/33

New problems with soft realtime

� The voice-over-IP system only loses packets
under stress.

� The cell-phone connect won’t drop your
Internet handset during a handoff unless
there is heavy traffic.

� If you start a browser on one machine, most
of the time sales transactions won’t get lost
on the other side of your SOHO router.

RTLinux – p.7/33

You don’t really need hard
realtime

� We have one failure every 100 hours of
operation on the average, but some
customers experience 5 failures in an hour.

Tell ’em to stop being such whiners.

Poor performance? More memory and a
faster processor!

What’s wrong with quad Itaniums, 8 Gig of
memory, and a liquid cooling system on a
$100 SOHO router?

RTLinux – p.8/33

You don’t really need hard
realtime

� We have one failure every 100 hours of
operation on the average, but some
customers experience 5 failures in an hour.

� Tell ’em to stop being such whiners.

Poor performance? More memory and a
faster processor!

What’s wrong with quad Itaniums, 8 Gig of
memory, and a liquid cooling system on a
$100 SOHO router?

RTLinux – p.8/33

You don’t really need hard
realtime

� We have one failure every 100 hours of
operation on the average, but some
customers experience 5 failures in an hour.

� Tell ’em to stop being such whiners.

� Poor performance? More memory and a
faster processor!

What’s wrong with quad Itaniums, 8 Gig of
memory, and a liquid cooling system on a
$100 SOHO router?

RTLinux – p.8/33

You don’t really need hard
realtime

� We have one failure every 100 hours of
operation on the average, but some
customers experience 5 failures in an hour.

� Tell ’em to stop being such whiners.

� Poor performance? More memory and a
faster processor!

� What’s wrong with quad Itaniums, 8 Gig of
memory, and a liquid cooling system on a
$100 SOHO router?

RTLinux – p.8/33

Hard realtime is needed

1. If "rare" timing failures are serious.

2. If precise timing makes a process possible.

3. If precise timing makes a performance
advantage.

RTLinux – p.9/33

Timing

1. A 30 microsecond delay can drop 20 Gig
Ethernet packets.

2. 10 70hz video streams need packets
unloaded at millisecond rates.

3. Time for 1 degree error on manipulator: 10
microseconds.

RTLinux – p.10/33

Low end examples.

1. Replace a digital joystick with an analog
joystick and a sound card.

2. Reduce control loop times by sampling A/D at
100 microseconds.

3. Log data over the network using Linux utilities
with no software development costs.

4. Use Apache standard web server as a control
interface – with no software development
costs.

RTLinux – p.11/33

Larger examples.

� Multiple software "Virtual routers" operating
on packets in realtime.

� Interactive robot control with non-RT
graphical interface.

RTLinux – p.12/33

The RTLinux operating system

A small hard realtime operating system that runs
Linux (or BSD) as its lowest priority task. Used
for everything from making chain-saw chains, to

switching packets to animating movies.

RTLinux – p.13/33

One view of RTLinux

RTLinux – p.14/33

Another view of RTLinux

RTLinux – p.15/33

RTLinux is decoupled from Linux

RTLinux schedules itself — Linux scheduler is
not involved.

Linux cannot delay or interrupt execution of
RTLinux

RTLinux – p.16/33

Results

1. Example on AMD SC520 133Mhz.

� Low latency response to events.
15microseconds or less.

� Precise scheduling of periodic tasks. 20
microseconds or less error.

2. On a standard PC: 19 microseconds and 50
microseconds

3. On SOCs we are in the single digits

RTLinux – p.17/33

Programming model

1. For Realtime tasks and event handlers:
POSIX Pthreads.

2. For Linux processes connection via POSIX
I/O, shared memory, and signals.

As standard as possible with no efficiency loss.

RTLinux – p.18/33

Programming view

1. The hard realtime component of realtime
applications should run in a simple, minimal,
predictable environment.

2. The non-realtime components should run in
UNIX until something better is invented.

3. Hard realtime and non-realtime should be
decoupled in operation.

RTLinux – p.19/33

Programming interface

1. "Lean" POSIX threads for RT components,
standard POSIX for non-RT components.

2. RTLinux can support alternate APIs.

3. API is programmer convenience: not
technology fundamental.

RTLinux – p.20/33

A typical simple application

RTLinux – p.21/33

The simplest user side data
logging program

cat < /dev/rtf0 > logfile

RTLinux – p.22/33

How to use RTLinux

RTLinux – p.23/33

Where is it used?

1. Communications: PBX’s, routers, ...

2. Factory automation: machine tools,
production lines.

3. Robotics: stepper motors, A/D, ...

4. Multimedia: animations, ...

RTLinux – p.24/33

RTLinux Version 3.0

1. V1 was a research project.

2. V2 was the first production version.

3. V3 is the first industrial strength version. x86,
Alpha, PPC, MIPS, smp support, ...

4. V4 on the way.

RTLinux – p.25/33

But why not integrate RT into
Linux?

� Experience shows: performance limits and
engineering costs.

RTLinux – p.26/33

Why is decoupling so important?

1. Mars Lander almost broke because a low
priority non-realtime process was able to lock
a resource needed by a critical realtime task.
The lock was hidden in complex code shared
by all tasks, realtime and non-realtime.

2. RTLinux makes all interactions between RT
and non-RT explicit and transparent .

RTLinux – p.27/33

The RTLinux technical synergy.

1. Highly efficient realtime.

2. Connected to a reliable and powerful
networked operating system (Linux).

3. Running on standard PCs, servers, and
embedded hardware.

RTLinux – p.28/33

The RTLinux cost advantage.

1. The costs of maintaining general purpose
software – data bases, networks, graphics,
development, ... – are shared with server and
desktop companies.

2. Prototype on PCs.

3. Access to source is essential for important
applications.

RTLinux – p.29/33

Coming in V4

1. RT networking. (for industrial control and
comms).

2. User mode RTLinux functions.

3. Failover technologies.

4. Optimizations.

RTLinux – p.30/33

Finite State Machine Labs

1. Core kernel development and GPL and
non-GPL RTLinux distributions.

2. Training, engineering services and product
support.

3. Application software in communications and
factory automation.

RTLinux – p.31/33

Why non-GPL development

1. Some of our customers need it: niche
products or close hardware/software
interaction is common in embedded.

2. We need it: we cannot pay for development
on contract services.

3. Our non-GPL is source to customers, but no
rights to remarket our code.

RTLinux – p.32/33

w.fsmlabs.com@

www.rtlinux.com

RTLinux – p.33/33

	Outline.
	Realtime versus Time Shared
	Hard realtime
	Soft realtime
	Traditional problems with soft realtime
	New problems with soft realtime
	You don't really need hard realtime
	Hard realtime is needed
	Timing
	Low end examples.
	Larger examples.
	The RTLinux operating system
	One view of RTLinux
	Another view of RTLinux
	RTLinux is decoupled from Linux
	Results
	Programming model
	Programming view
	Programming interface
	A typical simple application
	The simplest user side data logging program
	How to use RTLinux
	Where is it used?
	RTLinux Version 3.0
	But why not integrate RT into Linux?
	Why is decoupling so important?
	The RTLinux technical synergy.
	The RTLinux cost advantage.
	Coming in V4
	Finite State Machine Labs
	Why non-GPL development

