
State and history in operating systems
Victor YodaikenCopyright 2008.∗

yodaiken@finitestateresearch.com

May 19, 2008

1 Methods and application to operating systems
The classic UNIX code for switching processes is famously terse. In Version6 of UNIX[5], Dennis Ritchie appended a half-hearted explanation and thenadded a wry: “You are not expected to understand this”. Such complex statechanges are at the heart of OS design. In this note, I will specify what thecode does and illustrate methods that I hope will be of reasonably generalutility in understanding and designing computer and software systems.The code itself looks something like this.0 sw i t ch (p r o c e s s _ t ∗ nex t) {1 i f (save ()) {2 resume (nex t) ;3 pan ic (" r e t u r ned f rom resume ") ;4 } e lse f ixmmu () ; / / s w i t c h i n g in7 r e t u r n ;“Save” saves the process state of the current (running) process and returns"1" so that the running process then calls "resume" with a pointer to the savedprocess state of a second process — "next". The "resume" subroutine restoresthe state of the process identified by "next" and returns "0" as if it were returning
from save. The newly restored process then falls through to the code sectionmarked "switching in". The saved process does not start running again untilsome other process calls "resume" with a pointer to its data structure.

∗Permission granted to make and distribute complete copies for non-commercial use but notfor use in a publication. All other rights reserved but fair use encouraged as long as properlycited.
1

yodaiken@finitestateresearch.com

Process p1 Process p2 Process pk
save p1 state
return 1 to ”if”
call resume(p2)

return 0 to ”if”
enter else
fixmmu
return
...

switchout
...

save pk state
call resume(p1)

return 0 to ”if”There is no time limit between a process saving and resuming and thesystem can get up to any number of things in-between the two operations –even suspending itself.When process p1 calls "switch" with next = p2, then p1 will not get to"return" until p2 has resumed operation and then, in some future state, someother process pk where pk may or may not be the same as p2 calls switch with
next = p1. One way to express this property is to say that any path z thatstarts in process p1 at the start of "switch" and that terminates in process p1at the return from "switch" must be factorable into subpaths that visit a seriesof intermediate states - as shown in this diagram.

z

u1

u3

u2

u4

next=B

(A,switch,call resume)

(B,switch,fixmmu)

(C,switch, call resume)

next=A

(A, switch, enter) (A,switch, return)

The diagram is suggestive, but it would be nice to be able to write downexactly what it means and then see how other properties interact with thisproperty or what else we have to know about the system to assure this property.Let w be the "current event sequence" — the path that leads from the initial
2

state of the system to the current state1. Let λ be the empty sequence, wabe the sequence obtained by appending event a to sequence w, and w • z thesequence obtained by appending sequence z to sequence w. Then λ leads tothe initial state. Appending an event drives the system to a successor statefrom the current state. Appending a sequence of events drives the system to afuture state. Recursive relations are sufficient to define many event sequencedependent variables. Here’s a trivial one that just counts all events.
Count(λ) = 0 and Count(wa) = Count(w) + 1

In what follows, I will assume the existence of a collection of sequencedependent variables and functions that provide a window into state. Definitionsof some of those functions from simpler state variables are given in section 3.Suppose we have functions Cline and CName so that Cline(p,w) and
CName(p.w) are, respectively, the current line number and current functionname of process p in the source code listing (assumed here to be in "C"). Thena "debugger" view of system state is given by:

Loc(w, p) = (CFunc(w, p), Cline(w, p))
For every program variable x, we let V (w, p, x) be the current value of xin the context of process p. For example, when p is inside "switch" the valueof V (w, p, next) is the process identifier of the target of the switch. Note that

f(w • z, g(w)) evaluates g in the state reached by w and evaluates f in thestate reached by w • u. So Loc(w • u, V (w, p, next)) is the location of process
p′ = V (w, p, next) in the state determined by w • u.
Proposition 1.1 If Loc(w, p1) = (switch, 0) and V (w, p1, next) = p2 6= p1
then for any z so that Loc(w • z, p1) = (switch, 7) there must be a process
pk 6= p1 and sequences (u1 • u2 • u3 • u4) = z so that:

Loc(w • u1, p) = (switch, 2) (1)Loc(w • u1 • u2, p2) = (switch, 4) (2)Loc(w • u1 • u2 • u3, pk) = (switch, 0) (3)
V (w • u1 • u2 • u3, pk , next) = p1 (4)

Let’s suppose we have a boolean function "Running" so that Running(w, p) =1 if and only if p is active.
1There is a common theory that we have to pretend computational objects are "non-deterministic", but that seems to be based on mistaking methodological limitations for fun-damental properties.

3

• Running(w, p) ∈ {0, 1};
• Running(w, p) > 0 if and only if p is running in the state determined by
w;
• Running(λ, p) > 0 if and only if p is running in the initial state of thesystem;
• Running(w, p) > Running(wa, p) if and only if event a causes p to stoprunning if the system is in the state determined by w;
• there is a prefix u of z so that Running(w • u, p) if and only if p is"sometimes" running during z after the state determined by w.By using event sequences we get an active view of how variables changeand it is easy to define variables that help reveal the workings of a system.Here’s one that counts the number of times a process has "switched in".
In(λ, p) = 0,
In(wa, p) = { 1 + In(w, p) If Running(w, p) < Running(wa, p)

In(w, p) otherwiseOne of the advantages of the methods used here is that we are not forcedto either enumerate the state set or even explain too much about the alphabetof events. For something like an OS, the event alphabet is going to be largeand complex and the state set will be worse. Perhaps the event alphabet willconsist of "samples" of the inputs applied to the chips of the motherboard ateach processor cycle. We could imagine these events as digitized snapshotsof signals. Each snapshot then indicates some discrete interval of time haspassed. There may also be events that correspond to logical changes. But, fornow, we can just specify the information we need to be able to decode fromthe event stream.Let’s require that line numbers and source code functions only change whena process is active.Loc(wa, p) 6= Loc(w, p)→ Running(w, p)Note that Running(w, p) = 1 may not mean Running(w, p′) = 0 becausewe leave open the possibility of multiple processor cores. More on that below.Note that V (wa, p, x) 6= V (w, p, x) does not necessarily imply that Running(w, p) =1 — because many of the objects within the address space of a process areshared objects. For example the pages may page in or out, data may arrivefrom a DMA device, there may be notification of an I/O or other event, andshared data structures will be modified by other processes. Modularity inoperating systems is a tough engineering challenge.
4

2 Instrumenting the OS
Proposition 1.1 is a "safety" property — it requires that if there is a path fromentry to exit, the path must have certain properties. We also need a livenessproperty — that processes will advance from switch to the running of the targetprocess.If each event defines signals over a specified unit of time, then we can have
Time(w) provide the current time in some sufficiently fine unit. Without goinginto to much detail, Time needs to behave sensibly:

Time(w) ≤ Time(w • u)We will often need to count how much time passes during an event or sequenceof events
Time(w • u)− Time(w)tells us how much time passes during “u” after “w” and
Time(wa)− Time(w)measures the time during the single event a. It may be that there are eventsthat take no real-time or maybe each event corresponds to a sample of signalsduring a discrete interval or even that event duration depends on history. Wedon’t have to worry about any of that yet.Let’s also suppose we have ValidProcess(w, p) to tell us whether a processidentifier p identifies an actual, instantiated process (on any core) and we have

Ready(w, p) ∈ {0, 1} to tell us is a process is ready to run.
ValidProcess(w, p) ∈ {0, 1}
Ready(w, p) ∈ {0, 1}
Running(w, p) ≤ ValidProcess(w, p)
Ready(w, p) ≤ ValidProcess(w, p)We can now define how long a process has been waiting to run.

Waiting(λ, p) = 0
Waiting(wa, p)= { (Time(wa)− Time(w)) + Waiting(w, p) if Running(w, p) < Ready(w, p)0 otherwiseA a system is tlive live if Waiting(w, p) < tlive for all w. Although someresearchers have decided that "liveness" should be considered a property "in thelimit" (without an explicit time bound), I don’t think such a version of livenessmeans anything interesting when we are discussing engineered discrete stateobjects.

5

Proposition 2.1 Calling switch forces process "next" to run within a fixed time.
There is a tswitch so that for any w and z:

If Loc(w, p) = (switch, 0) and Time(w • z) ≥ Time(w) + tswitch
then there is a prefix u of z so that Loc(w • u, V (w, p, next)) = (switch, 5)

Proposition 2.1 has to be true if the system is tlive live. Otherwise, theswitching out process could stall, forever.The two propositions formalize what we want the switch code to do ata high level, but do not specify how state must be preserved over a switch.Since process state consists of both shared and non-shared data, we have todistinguish those:
Proposition 2.2

If Loc(w, p) = (switch, 3) and Loc(w • u, p) = (switch, 5)
and there is no proper prefix z of u so that Loc(w • z, p) = (switch, 5)

then for any non-shared variable x, V (w, p, x) = V (w • u, p, x)
3 Digging down
Here’s a list of functions "assumed" into existence above that need to be eitherjustified or defined from simpler elements.

Cline
Cname
SavedRegisters
StackContents
ValidProcess
Ready
Running
Time
NonShared
V

Let’s suppose that the machine has 1 or more cores and that
Reg(w, c, r),Mem(w, c, loc)

are, respectively the contents of register r on core c and the contents of memorylocation loc on core c. For example Reg(w, c, PC) (program counter) andReg(w, c, SP) (stack pointer) are useful to know. Given a program listing L

6

and the current program counter, it is reasonably straightforward to compute
CLine and CName, so I won’t dig into those further. Given these values,whether a symbol is a stack or global variable is also straightforward, sowe assume IsStack and IsGlobal can be constructed. Furthermore, for globalvariables the correspondence between name and address is determined by theprogram listing and some data about the compiler/linker settings. Supposethere is a memory location current[c] for each core c that holds the identityof the current process on core c. Then Mem(w, c, current[c]) is the processrunning on core c. We have to require that

Mem(w, c, current[c]) = Mem(w, c′, current[c′])↔ c = c′

and then
Running(w, p) { 1 if for some c,Mem(w, c, current[c]) = p0 otherwise.
Ready(w, p)

 1 if for any c, Bitset(Mem(w, p+ procstatus), READY)and ValidProcess(w, p)0 otherwise.
V (wa, p, x)


Mem(wa, c, y) ifMem(w, c, current[c]) = pand IsGlobal(w, p, x) and y = xand IsStack(w, p.x) and y = x + Reg(w, c, SP)
V (w, p, x) otherwise.

If Reg(w, c, SP) is the contents of the stack pointer register on core c,then Mem(w, c,Reg(w, c, SP)) is the contents of the top of the stack on pro-cessor core c (assuming alignment and so on). In many operating systems,the kernel stack of a process, which is what we are discussing here, is fixedsize and "grows down" by subtraction from a, for example, 8K boundary. Oneof the reasons for doing this is that its easy to calculate the stack base by
bitwiseand(stackaddress+8095, bitinvert(8095)) if the stack is 8K and onan 8K boundary. In that case, we can define StackContents so it captures thestack.
StackContents(wa, p)
=


(Mem(w, c, a)...Mem(w, c, b)) ifRunning(w, p)and Mem(w, c, current[c]) = pand a = Reg(w, c, SP)and b = bitiseand(a+ 8195), bitinvert(8195))and increments between a and b are by wordsize
StackSize(w, p) otherwise

7

Note that StackContents is defined so that it does not change when theprocess is not running. If we dig down to the assembler level, we’d probablywant to be sure that the stack contents at the point of return from save wasthe same as that at the point of return from resume.
Cline from Reg(w, c, PC)
Cname from Reg(w, c, PC)
SavedRegisters from Reg(w, c, ..)
StackContents from Reg(w, c, SP) and Mem(w, c, ..)
ValidProcess from Mem(w, c, p− > status)
Ready from Mem(w, c, p− > status)
Running from Reg(w, c, current)
Time primitive
NonShared from symbol table
V from Mem(w, c, ...)

4 Parallelism and encapsulation
Parallelism is a huge issue in "formal methods" but appears naturally here. Forexample, it is certainly possible that for some w and a there are several cores
c so that Reg(wa, c, PC) 6= Reg(w, c, PC). We have not had to yet specifyanything about the way the cores change state in parallel — they just arespecified in a way that makes it possible. In some cases, however, we wantto describe systems in which the architecture of components is specified andthat is also straightforward.Consider an abstract model of process interaction where processes caneither wait for or generate events and, only one process can advance per core.We are going to want to connect up a collection of these processes so that they

communicate sychronously.

step receive

send

step output=running

output=sending

output=waiting

Notethat the diagram obscures the intent that there may be many different stateswhere output is running, waiting, or sending.
Definition 4.1 f is an abstract state process over P and X with id p0 if and

8

only if

f(w) ∈ {running,waiting[p], sending[x, p] : x ∈ X, p ∈ P}
and f(w) 6= running → f(w · 〈step〉) = f(w)
and f(w) = sending[x, p]→ f(w · 〈send〉) = idle
and f(w) = waiting[p]→ f(w · 〈receive[x, p]〉) = idle
and f(w) 6= waiting[p0] — never wait for self
and f(w) 6= sending[x, p0] — never sent to self

Many distinct sequence dependent functions can satisfy this specification.That is, we can have A1 and A2 that are both abstract processes by thisdefinition where A1(w) 6= A2(w) for some or even most w. An abstract processthat is "running" has some internal procedure for deciding when to request tosend or receive a message. We do not need, now, to decide what that processis, but it could easily be the execution of a program it receives as a messageor something fixed in its internal operation or some combination. Finally, wehave not specified what happens when unwanted events happen — such as areceive from p′ when the process wants to receive from p.Now let’s define a connected system of such abstract processes. Supposethat each of Ap1 . . . Apk are abstract processes and define
F (w, p) = Ap(wp)

where we will define wp recursively.
λp = λ and (wa)p = wp • g(w, a, p)

and

g(w, a, p) =


〈receive[x, q]〉 if Ap(wp) = waiting[q]and Aq(wq) = sending[x, p]
〈send〉 if A(wp) = sending[x, q]and A(wq) = waiting[p]
〈step〉 if A(wp) = runningand Running(w, p)
λ otherwise.

Note that p only gets to "step" if it is selected as the running process inthe encompassing environment of the operating system.

9

5 Conclusion and mathematical note
In brief, sequence functions are representations of Moore type state machines.Given a sequence function f over alphabet B let B∗ be the set of finite se-quences over B including λ and define

w ∼f z ⇐⇒ ∀u ∈ B∗, f(w • u) = f(z • u)
Then define [w]f = {z : z fw} and consider the set of these equivalence classes
Sf = {[w]f : w ∈ B∗}. Define δf ([w]f , a) = [wa]f and define γf ([w]f) = f(w).Then Mf = (B,Sf , [λ]f , δf , γf) is a classical (although not necessarily finite)Moore machine with state set Sf , initial state [λ]f , transition map δf , andoutput map γf .Conversely, given a Moore machine M = (B, s0, δ, γ) define fM so that
fM(w) = γ(δ∗(w)) where δ∗(λ) = s0 and δ∗(wa) = δ(δ∗(w), a).The encapsulation of section 4 corresponds to a Moore machine pro-duce called the general product [2]. For simplicity let’s define this productfor finite numbers of state machines. Suppose f : B∗ × X → Y where
X = {x1, . . . xk} is defined by f(w, x) = g(wx) where λx = λ and (wa)x = wx •
ρ(f(w, x1) . . . , f(w, xk), a, x). For even more simplicity, suppose ρ(y1, . . . yk , a, xi) ∈
Bi. Then for each i we can construct a Mgi = (Si, s0i , δi, γi) using the construc-tion above. Define a product by Mf = (ΠiBi, (s00 ...s0k), δ, γ). Each state of Mfis a k-tuple s = (s1, . . . sk) ∈ ΠiSi. The transition function δ is constructedas follows:
δ(s, a) = (δ1(s1, ρ(γ1(s1) . . . γk (sk), a, x1)), . . . δk (sk , ρ(γ1(s1) . . . γk (sk), a, xk))).
Finally: γ((s1, . . . sk)) = (γ1(s1), . . . γk (sk)). Then fMf (w) = (f(w, x1) . . . f(w, xk).It may be seen why the functional representation is advantageous in some sit-uations.Consideration of the algebraic basis of state machine theory and the re-lationship between state machines and semigroups indicates that there maybe some value in looking at the algebraic structure of sequence dependentfunctions. If ∼=f is defined so that

w ∼=f u ⇐⇒ ∀z1, z2, f(z1 • w • z2) = f(z1 • u • z2)
then the congruence classes [[w]]f = {u : w ∼=f w} form a monoid under theoperation [[w]]f × [[u]]f = [[w ∼= u]]f . If we constrain ρ to not depend on anyfeedback, so that transitions to Mi depend only on outputs of Mj : j < i, thenthe results of Krohn-Rhodes theory as described in Holcombe [4], Arbib [1]

10

and Ginzburg [3]. What happens if ρ is constrained in other ways, such asby a certain circuit design discipline? Also, in databases, using some circuitdisciplines, and in other situations, invertibility is a useful property. Thatinvertibility produces sequence functions that correspond to groups.A much earlier version of this work can be found in [9] and [8] and muchearlier in [7] with applications in [6] and [10]. Unfortunately, it took me manyyears to understand good advice from Professor George Avrunin that the formallogic notation was an impediment instead of an advantage.
References
[1] Michael A. Arbib. Algebraic theory of machines, languages, and semi-

groups. Academic Press, 1968.
[2] Ferenc Gecseg. Products of Automata. Monographs in Theoretical Com-puter Science. Springer Verlag, 1986.
[3] A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.
[4] W.M.L. Holcombe. Algebraic Automata Theory. Cambridge UniversityPress, 1983.
[5] John Lions. Lions’ commentary on UNIX 6th edition with source code.Peer-to-Peer Communications, Inc., San Jose, CA, USA, 1996.
[6] V. Yodaiken and K. Ramamritham. Verification of a reliable broadcastalgorithm. In J. Vytopil, editor, Formal Techniques in Real-Time and Fault-

Tolerant Systems, number 571 in LNCS. Springer-Verlag, 1992.
[7] Victor Yodaiken. Modal functions for concise representation of finite au-tomata. Information Processing Letters, Nov 20 1991.
[8] Victor Yodaiken. Discrete state variables. Technical Reporthttp://www.yodaiken.com/papers/s8.pdf, 2005.
[9] Victor Yodaiken. Discrete state variables. Technical Reporthttp://www.yodaiken.com/papers/s10.pdf, 2006.

[10] Victor Yodaiken and Krithi Ramamritham. Specification and verificationof a real-time queue using modal algebra. In IEEE Real Time Systems
Symposium, 1990.

11

	Methods and application to operating systems
	Instrumenting the OS
	Digging down
	Parallelism and encapsulation
	Conclusion and mathematical note

