
The meaning of concurrent programs (DRAFT)

Victor Yodaiken
Copyright 2008.∗

yodaiken@finitestateresearch.com

July 14, 2008

1 Basics

Consider a combined software and hardware "system" consisting of a set of threads
T , a memory, a set of devices D , some number of processor cores, and i/o and other
components that we don’t need to specify yet. Questions like "can there be a state
where multiple threads are executing inside a critical region" can be answered only by
understanding how state variables change as the system changes. Since the hardware
and software are designed to be both discrete state and deterministic we can consider
system variables to be functions of the sequence of events that have driven the system to
its current state. For example, the contents stored in a memory location vary with the
event sequence. Or consider the following: "Formal

methods"
researchers
argue
concurrency is
non-
deterministic
because they
have confused
"unspecified"
with "non-
deterministic".

thread t starts a test-and-set operation with arguments "ptr" =α and "in-
dex" = j in the state determined by event sequence w

The event sequence is generally immense and the events are complicated. A single
event may correspond to the signal changes on the input pins of every circuit on the
system during a single processor cycle. But we can abstract out properties of the se-
quences and focus on the properties of interest.

The "specifications" given here are in ordinary working mathematical notation
plus some relatively informal language. I have made a deliberate effort to try to avoid
unnecessary formalization. A statement of the form "at this state "x" holds contents
= j " is clear enough — and can be translated into more formal mathematical notation
whenever needed. See section 3 for details. On the other hand, I have made efforts
to avoid oversimplifying the semantics of actual computations. For example, the exe-
cution of an atomic "compare and swap" operation is both impressively complex and
precise. When a thread reaches the start of this operation, there may be interrupts
which cause unspecified delays as the operating system switches out the thread and
any number of other tasks may start the same operation "at the same time", but the
hardware assures that only one thread will complete the operation and get a success
result.

1.1 Sequences and state

Given a sequence w and a variable depending on w , x the meaning of x at w is simply
the value of x in the state reached by following w from the initial state. For example
consider:

The contents of memory locationα is n at w.

∗Permission granted to make and distribute complete copies for non-commercial use but not for use
in a publication. All other rights reserved but fair use encouraged as long as properly cited.

1

yodaiken@finitestateresearch.com

Many properties are described in terms of what can happen between two states.
Write w z for the sequence obtained by appending sequence z to sequence w . If some
memory location α remains unchanged from the w state to the w z state we could say:

The contents of location α does not change between w and w z (inclusive of
the end points).

I’ll label memory locations with either addresses or symbolic names that may depend
on the thread. The address corresponding to variable x for task t at w may not be
the same as the address of x for thread t ′ or even for thread t in another state. Write
Addr(w, t ,x) for the address of x in the state determined by w in the context of t . Let
Word(w,α) be the contents of memory at address α in the w state.

Let’s insist that memory contents only change if a device or thread "writes" to that
location:

Description 1.1 If Word(w,α) 6= Word(w z,α) there there must be some be some thread
t so that t writes Word(w z,α) to α between w and w z or some device d so that d writes
Word(w z,α) to α between w and w z

When we discuss the way a state variable changes as the system changes state,
we will often need to be able to identify the states that are visited in between the two
terminal states. For any u, the sequence w is a prefix of the sequence wu. If u is not
the empty sequence, then w is a proper prefix of wu. Write w ≤ w z to indicate w is
a prefix, and w < wu to indicate that w must be a proper prefix. Then w < q < w z
constrains q to be between w and w z and but not equal to either, while w ≤ q ≤ w z
allows q to reach the end points. So our constraint above could be rewritten more
precisely as

Description 1.2 If Word(w,α) 6= Word(w z,α) = k there there must be some w < q ≤ w z
so that for some thread t , t writes k to α at q or or for some device d, d writes k to α at
q.

The problem with shared memory systems is that the operation of reading, mod-
ifying and writing a new value back is generally not atomic. This can be shown as
follows for a simple increment x = x+1 the semantics of which is as follows.

Description 1.3 If task t starts x = x + 1 at w and completes it at w z and Addr(w, t , x) =
α then there is some w ≤ q ≤ w z so that Word(w z,α) = Word(q,α)+1 (where "+1" de-
pends on the type of the variable x in the context of t).

Suppose t executes x = x+1 in the interval w to w z and t ′ executes the line of code
in the interval w ′ to w z ′ where w ≤ w ′ < w z ≤ w z ′ and for t we have Word(w z,α) =
Word(q,α)+1 and for t ′ we have Word(w z ′,α) = Word(q ′,α)+1. There is no assurance
that Word(q ′,α) = Word(w z,α) — and that’s the heart of the synchronization problem
for data in shared memory architectures.

An atomic compare and swap (ACS) operation changes swaps the contents of mem-
ory for a "new" value if it finds the contents to be identical to a "test" value — and if
there is no competing write that beats us to the punch. If the result is 1 then (1) no
other task can get a result of 1 for that address during the interval, and (2) at the start,
α contains the old value and it only changes in some in-between state to contain the
new value. If the result is 0 then (1) the thread does not complete any write opera-
tion during the interval, and (2) there is, by way of explanation, some in-between state
where α does not contain the expected old value or some intervening "write" opera-
tion.

2

Description 1.4 If thread t starts an atomic compare-and-swap (ACS) operation at w
with target=α, new= n and old= k and completes it at w z, then let Rt ,w z,α = the result
at w z for t

Rt ,w z,α ∈ {0,1} (1)

Rt ,w z,α = 1 → for all w ≤ q ≤ w z there is no t ′ 6= t ,Rt ′,q,α = 1

and there is some w < q ≤ w z so that

for all w ≤ q ′ < q the contents of α at q ′ is k

and for all q ≤ q ′ ≤ w z the contents of α at q ′ is n (2)

Rt ,w z,α = 0 → for all w ≤ q ≤ w z, t does not write to memory at q

and there is some w ≤ q ≤ w z so that either (3)

the contents of α at q is not k

or there is some write at q by any device or a thread t ′ 6= t (4)

Note that we do not require the hardware is smart enough to be sure that we suc-
ceed if some in-between write writes the old value k. This allows for implementation
by hardware that does a "clear written bit on this address", then a "load contents",
then a "write if written bit is still zero". And there is no requirement that the ACS com-
plete in any fixed time - that’s something we’d need in a more detailed treatment.

1.2 Pointers, functions, and longer chunks of code

Word(w,Word(w,α)) is the contents of the memory at the address that is the contents
of the memory at α in the w state. Consider this simple function.

void calculate (int m, int * ptr) {
int old = * ptr ;

* ptr = m*m + * ptr ;
return old ;

}

The intended behavior can be defined as follows:

Description 1.5 If t starts to call calculate with "m" = j and "ptr" =α at w
and t returns from the call started at w in w z.
Then Word(w z,α) = Word(w,α)+ j ∗ j and at w z the return value of t = Word(w,α).
(Assuming non-interference).

What’s non-interference? In this case it is just that:

There is no w ≤ q ≤ w z,h ∈ T \{t }∪D, so that h writes to any of the local variables of t at q

1.2.1 Note on machine model

The model used here assumes that "writes" commit at the last event — so that a store
to memory location α may takes multiple events, but Word(w,α) only changes as the
write completes. I can’t see how this assumption conflicts with computer architecture
practice in any way that would lead us astray, but the assumption is not at all necessary
for using the methods described here.

More seriously, I’m glossing over non-coherent memory here just to simplify expo-
sition. In fact, Word(w, t ,α) may not equal Word(w,α) if some t ′ has written to α but
the new value is in a write buffer or even if the write has been executed out of order.
I’ll return to this below to show how to make the model more realistic, but assuming
that memory is coherent is reasonable in many situations and leaves us with a useful
model.

3

I’m treating memory contents as "numbers" — assuming that expressions like
Word(w,α)+1 are known to be shorthand for e.q. Word(w,α)+1) mod 232 or whatever
the programming language type restrictions call for. Finally, I’m only working with
whole words of memory value here and am not worrying about bytes — see section 3
for some discussion.

2 Critical regions

One protocol for synchronization is to use a memory location as a "gateway" set to
contain 0 when open and some non-zero value, say 1, when closed. Once the gateway
is initialized, we can require that threads succeed in an atomic compare and swap with
the gateway address as target, 0 as the old value, and 1 as the new value to become
"owner" and that the gateway is released by setting it to zero. It’s not necessary to have
the owner always be the releaser - but the releaser needs to be sure not to release an
already released gateway. To understand this problem, suppose t1 is trying to enter the
gateway and t2 is trying to release it — but it is already released. Then t1 may fail on
the ACS operation because a write happens during the ACS operation — even though
the write does not change the contents.

I’m going to define G(w,α) ∈ {0,1} to tell us if the gateway has been initialized and
used properly and then Owns(w,α, t){0,1} to tell us if thread t owns the closed gate-
way. Let’s leave "activated" and "deactivated" undefined for now and just track status.
The empty sequence of events "λ" is the sequence that leads to the initial state. So if
we define a function at λ and at w a in terms of its value at w , we have defined it for
every state.

G(λ,α) = 0 (5)

G(w a,α) =

1 if the gateway is set to 0 and was activated
and no thread is executing an ACS operations with target=α

0 if the gateway was deactivated
or if some device d writes toα at w a
or if some thread t writes a nonzero value to α at w a
unlesst is executing an ACS operation
or if some thread t writes a zero value to α at w a
unless α contains 1 at w

G(w) mboxother wi se

(6)

Owns(λ,α, t) = 0 (7)

Owns(w a,α, t) =

0 if G(w a,α) = 0
or if α contains 0 at w a

1 if G(w a,α) = 1
and t completes an ACS operation
with target=α,old=0 new=1 and result=1 at w a

(8)

We can now show that:

Σt Owns(w,α, t) ≤ 1 (9)

This is obviously correct if G(w,α) = 0, so in what follows assume G(w,α) = 1.

Σt Owns(w, t ,α) ≤ 1 and Σt Owner (w, t ,α) > 0 ↔ Word(w,α) = 1 (10)

[Proof is done, but ugly. Basic idea is induction on string length. TBFixed].
Let C be a set of line numbers within a "critical region". We may want to use ACS

operations to guard a critical operation. So we may want to show that for some α

if t is executing a line n ∈C in the w state then Owner (w, t ,α). (11)
4

3 Details

Assume we have Word and also Reg so that Reg(w, t ,r) is the contents of either the
physical register r in the w state if t is executing on some core in that state, or the
stored register saved by the OS if t is blocked in that state. We also need InstructionBoundary(w,c) ∈
{0,1} to be true (1) if and only if core c completes execution of its current instruction
in the w state. Finally, we need some understanding of how the OS tracks threads
- let Active(w,c, t) ∈ {0,1} be true (1) if and only if thread t is executing on core c in
the w state. In most operating systems, there will be a data structure indexed by core
processor identifier so that we will have something like

Active(w,c, t) =
{

1 if Word(w,β) = t , where β= Word(w,Word(w,"cur r ent")+ c)
0 otherwiseActive(w, t) =Σc Active(w,c, t)

(12)

Assume that Acti ve(w, t) ≤ 1.

For each thread t , t is executing at w if and only if Active(w, t).

Thread t writes value j to memory locationα at w depends on Reg(w, t , pr og r amcounter)
and InstructionBoundary(w,c) where c is the core identifier so that Active(w,c, t).
If Active(w, t) = 0 then the thread cannot be completing a write at w .

Thread t starts execution of line of code y = x+1 at w and completes execution

of the line of code at w z also depends on Reg and InstructionBoundary.

Thread t calls function f(int x,float y) with arguments "x" = i, "y" =
j at w and completes the call with return value = k at w z requires

some depth tracking if we permit recursive functions �- which we

should. Let F depth(λ, t , f) = 0 and

F depth(w a, t , f) =

1+F depth(w, t , f) if t calls f at w a
F depth(w, t , f)−1 if t ends a call to f at w a
F depth(w, t , f) otherwise

Then t calls f at w and returns from that call at w z requires that

F depth(w, t , f) = F depth(w z, t , f)+1 and there is no w < q < w z so that

F depth(w, t , f) = F depth(q, t , f)+1.

4 Related Work and Empiricism versus Axiomatics

This is a less formal and less OS-centric companion to [Yod08] which is a successor to a
long series of papers attempting to make this line of research into something practical.

This work is in some ways a reaction against the entire field of "formal methods "
which starts with the idea that a program is a mathematical object that can and should
be "formalized". I’m more comfortable with considering a program to be a manufac-
tured object with some properties we may find useful to define mathematically but
with a nature that is empirical. So my goal is to provide methods that can be used in
conjunction with informal rules, and experimentation, and testing, much engineers
approach other manufactured goods such as locomotives and rubber ducks.

The empirical bias lead me to discard the emphasis on non-determinism in the
formal methods literature. In software and hardware design, non-determinism is an
error condition or is a result of interaction with some partially specified device or soft-
ware component. At the most basic, if we see systems as non-deterministic, they must
be modelled as relations: a sequence of events w maps to a set of possible terminal
states. But relations are really awkward objects and it is conceptually at least as reason-
able to consider each sequence to determine a single terminal state — but one which

5

we may not be able to fully specify. Even the most non-deterministic of phenomena,
such as a gate that can go into meta-stable state can be considered a deterministic
device. Is the state machine that models the gate non-deterministically choosing an
output or reading from a very large or even infinite table of random digits? I can’t see
why we would ever care at the system level.

The techniques of formal logic/meta-mathematics and the viewpoint rooted in
the semantics of programming languages have drawbacks for a more empirical ap-
proach to semantics. Applied mathematicians do not use formal logic - formal logic is
a tool for reasoning about mathematics while I’m more interested in reasoning about
test-and-set bit instructions. And programming languages, especially those which
have built-in "concurrency" have weak semantics that requires building up of com-
plex rule sets. For example, the treatment of concurrent threads here is far simpler
than that of Milner[Mil79] and Hoare [Hoa85] where a thread has to be treated as a
fundamental object that is inherently "non-deterministic" instead of as product of an
underlying deterministic scheduling system.

It may be obvious, however, that the ideas of reasoning about intervals were influ-
enced and derive a great deal from works on temporal logic[MP79, MM83] and more
generally modal logics[Kri63]. The idea of dealing with sequences of events instead
of states comes from frustrating attempts to describe specific paths using the state
quantifiers in temporal logic. Temporal logic allows the user to say "P is true in the all
possible next states" or "P is true in some possible next states", but to say "if X hap-
pens and drives us to the next state, then P" requires additional data structures and
after some one one begins to doubt the utility of the formal logic framework.

References

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Kri63] S. Kripke. Semantical considerations on modal logic. Acta Philosophica Fen-
nica, 16:83–94, 1963.

[Mil79] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer Verlag, 1979.

[MM83] B. Moszkowski and Z. Manna. Reasoning in interval temporal logic. Techni-
cal Report STAN-CS-83-969, Stanford University, July 1983.

[MP79] Z. Manna and A. Pnueli. The modal logic of programs. In Proceedings of the
6th International Colloquium on Automata, Languages, and Programming,
volume 71 of Lecture Notes in Computer Science, New York, 1979. Springer-
Verlag.

[Yod08] Victor Yodaiken. State and history in operating systems. Technical report,
Finite State Research LLC, May 2008. http://www.yodaiken.com/papers/
h2.pdf".

6

http://www.yodaiken.com/papers/h2.pdf"
http://www.yodaiken.com/papers/h2.pdf"

