
State machine models of timing and circuit
design

Victor Yodaiken⋆

FSMLabs Inc. yodaiken@fsmlabs.com
http://www.yodaiken.com

Abstract. This paper illustrates a technique for specifying the detailed
timing, logical operation, and compositional circuit design of digital cir-
cuits in terms of ordinary state machines with output (transducers). The
method is illustrated here with specifications of gates, latches, and other
simple circuits and via the construction of devices starting with a SR
latch built from gates and then moving on to more complex devices.
Circuit timing and transients are treated in some detail. The method is
based on “classical” automata and recursive functions on strings. No for-
mal methods, extended state machines, or process algebras are involved
but a reference is made to potential applications of the Krohn-Rhodes
theorem and other group/monoid based algebraic techniques.

Key words: transducer, Moore machine, primitive recursion, composi-
tion, parallel

1 Introduction

Both the time sensitive behavior and circuit architecture of digital circuits can
be effectively modelled as ordinary state machines using recursive functions for
specifications. State machines are already widely used to model sequential cir-
cuits[13], and for circuit synthesis and automata modelling. This paper describes
a novel method for specifying complex circuits, composition, timing, and par-
tially specified circuits in terms of classical Moore type transducers. In the com-
puter science literature, it is often argued that state machines need to be “aug-
mented” with clocks or otherwise to model timing (see for example [9, 12, 1])
but we will do without such additives here. Retaining the mathematical basis of
un-augmented, “organic” state machines has both practical and theoretical ad-
vantages discussed in section 5. This note starts with the example of logic gates
and latches constructed from cross-coupled gates, where timing and transient
signals must be taken into account. Section 3 makes the case that the methods
used in section 2 actually are equivalent to ordinary automata. Section 4 carries
us into proofs and more examples from simple digital circuit design.

The focus in this paper is on the by-hand methods of specification and veri-
fication, but the methods described here seem to be well suited to automation.

⋆ Reformatted and edited Jan-18-10, March 16 2010

2 Yodaiken Mar-16-10

2 Describing circuits

2.1 Behavior

Behavior should encompass the possibility of transient outputs and inputs, con-
ditions that leave output undetermined, and “don’t care” inputs and outputs.
The basic idea here is to model circuits as state machines with output, possibly
state machines constructed as products of simpler state machines. The recursive
function technique permits convenient specification of enormous state machines,
state machines with parameters, and quite arbitrary interconnect.

A state machine with output (a transducer) M can be treated as a map from
sequences of inputs to output values with M(w) corresponding to the output of
M in the state reached by following the sequence w from M ’s initial state. If
we put M(Λ) = x0 where Λ is the empty sequence, we have defined the initial
state output of M — something that is usually unspecified in state machines
modelling circuits. If we then putM(wa) = f(M(w), a) where wa is the sequence
obtained by appending input a to sequence w, we have totally determined the
input/output behavior of M .

For state machines modelling circuits, inputs can be “samples” of the input
signals applied to the input pins during the shortest interval of interest (time
units may be picoseconds or microseconds or femtoseconds, depending on the
devices being studied). A sample assigns signal levels to pins. To start, we can
suppose signal levels are limited to {0, 1}. Samples are then maps InputP ins →
{0, 1} where the set of input pins depends on the device in question. Then
Time(w) defined by Time(Λ) = 0 and Time(wa) = 1+Time(w) is a (not finite)
state machine that simply counts the number of time intervals that passed since
the initial state. But High(w, p) defined by High(Λ, p) = 0 and High(wa, p) =
(High(w, p)+1) ∗ a(p) tells us how long pin p has been kept high in consecutive
preceding time intervals.

Say that G is an OR gate with input pins P and propagation delay t only
if High(w, p) ≥ t for some p ∈ P implies that G(w) = 1. There are an infinite
number of state machines that satisfy this constraint — corresponding to the
process variability of actual gates.

Instead of defining Low to correspond to High, define a single function to
see how long a pin has been held at a level.

For b ∈ {0, 1} and pin p

H(Λ, p, b) = 0 (1)

H(wa, p, b) =

{
H(w, p, b) + 1 if a(p) = b
0 otherwise.

(2)

Or more compactly H(wa, p, b) = (H(w, p, b) + 1) ∗ (1− |a(p)− b|).
A NAND gate can be specified as follows.

Definition 21 N is a NAND-gate with propagation delay t > 0 on pins P only
if

Whenever H(w, p, 0) ≥ t for any p ∈ P then N(w) = 1 (3)

State machine solutions 3

and

Whenever H(w, p, 1) ≥ t for all p ∈ P then N(w) = 0 (4)

The idea here is to minimally specify what we can expect from a gate and
not constrain for example transient behavior unless we have some reason to be
able to specify in more detail.

Given a function f , let’s have #f count how long the output of f has been
stable.

#f(Λ) = 0 (5)

#f(wa) =

{
#f(w) + 1 if f(wa) = f(w)
0 otherwise.

(6)

So it’s useful to note that if N meets the requirements for a NAND-gate
with delay t then holding an input pin low for t + k time units causes output
to be kept stable for at least k time units. This is a pretty obvious fact, but
let’s prove it just to show a style of recursion based proof that seems eminently
automatable.

For any k ≥ 0[#N(w) ≥ H(w, p, 0)− (t+ k)] (7)

Note that #N(w) ≥ 0 by definition. If H(w, p, 0) ≤ t then H(w, p, 0) − (t +
k) ≤ 0 so there is nothing to prove. But if H(w, p, 0) > t then the NAND gate
constraints require that N(w) = 1 and the rest follows by induction on w. For
w = Λ there is nothing to prove since H(Λ, p, 0) = 0 by definition. Suppose that
H(wa, p, 0) ≥ t. If H(wa, p, 0) = t then H(wa, p, 0)−(t+k) = 0 and there is still
nothing to prove since #N(w) ≥ 0 by definition. If H(wa, p, 0) > t then it must
be that H(w, p, 0) ≥ t since by construction H(wa, p, 0)−H(w, p, 0) ≤ 1. Thus
N(w) = 1 and N(wa) = 1 so #N(wa) = #N(w)+1 and if #N(w) ≥ H(w, p, 0)
as assumed by recursion, the inequality must still hold in the wa state.

I’ll postpone multi-output circuits to section 4.

2.2 Composition

Now consider how two NAND-gates could be cross-coupled to create a latch. In
this case, the inputs to the composite circuit induce inputs for the two component
gates. Suppose that N1 and N2 are solutions to constraints 3 and 4 with input
pins {1, 2}. We want to construct some L that contains copies of N1 and N2 and
that accepts input samples that are maps {set, reset} → {0, 1}. When an input
a is applied to L an input c1 will be generated for the copy of N1 and an input
c2 for the copy of N2. Input c1(1) = a(reset) and input c2(1) = a(set) as the
two inputs are connected directly to the input pins of the components. But c1(2)
will be set to the output of N2 in the current state and c2(2) to the output of
N1 in the current state.

4 Yodaiken Mar-16-10

Input:w →
(
Input:u1 → Machine:N1 → Output:x1

Input:u2 → Machine:N2 → Output:x2

)
→ → Output:(x1, x2)

⇑ ⇓
⇐ ⇐========= feedback ⇐======== ⇐==

Define L(w) = (N1(u1), N2(u2)) where u1 and u2 are the induced input
sequences that are themselves functions of L and w. We need to define a mapping
w 7→ (u1, u2) and we do so recursively. Note that when w = Λ we must have
u1 = u2 = Λ so that the components do not see any input until the composite
system sees input.

Definition 22 L is a constructed RS-Latch with base propagation delay t on
pins {r, s} only if

L(w) = (N1(u1), N2(u2)) (8)

where each Ni is a NAND-gate with delay t on pins{1, 2} (9)

w 7→ (u1, u2) (10)

and when w = Λ then w 7→ (Λ,Λ) (11)

and when w 7→ (u1, u2) then wa 7→ (u1c1, u2c2) (12)

where c1(1) = a(reset), c1(2) = N2(u2), c2(1) = a(set), c2(2) = N1(u1) (13)

Define C(w) = N1(u1) to extract the q output from the latch.

2.3 Abstraction

Stepping back from the construction, consider an abstract behavioral specifica-
tion of an RS-latch.

latched(Λ, b, tlatch) = 0(14)

latched(wa, b, tlatch) (15)

=

1 if b = 1 and H(wa, reset, 0) ≥ tlatch and H(wa, set, 1) ≥ tlatch
or if b = 0 and H(wa, reset, 1) ≥ tlatch and H(wa, set, 0) ≥ tlatch
or if a(set) = a(reset) = 1 and latched(w, b, tlatch) > 0

0 otherwise

We want to say C is a SR-latch with delay tlatch if and only if whenever
latched(w, b, tlatch) = 1 we must have C(w) = b. Without proof, if L is con-
structed from NAND-gates of delay t as specified above, and C(w) = N1(u1)
then C is a RS-latch with delay 3t+2. The +2 is an artifact of the model, which
imposes a single time unit delay for a signal to propagate between the output

State machine solutions 5

and input of any connected components1. Of course, this is not a surprising fact,
since engineers have been using latches since the 1950s and, by all indications,
they work as intended.

Just for fun, consider a NAND-gate constructed from 3 gates. Suppose N1

and N2 and N3 are all NAND-gates with delay t on pins {1, 2, 3} and we want to
build a NAND gate with input pins {1, 2, 3, 4, 5, 6, 7} from them. Put N ′(w) =
(N1(u1), N2(u2), N3(u3)) and let N(w) = N3(u3). Define w 7→ (Λ,Λ,Λ) when
w = Λ. Then if w 7→ (u1, u2, u3) define the mapping wa 7→ (u1c1, u2c2, u3c3)
where

c1(1) = a(1), c1(2) = a(2), c1(3) = a(3) (16)

c2(1) = a(4), c2(2) = a(5), c2(3) = a(6) (17)

c3(1) = a(7), c3(2) = N1(u1), c3(3) = N2(u2) (18)

The glaring difference between N ′ and the constructed L is that the mapping
from w to the ui involves recursive feedback for L but not for N ′.

3 Reduction to Automata

3.1 Representations

We’re representing state machines (transducers) with functions on strings.

Correspondence between a transducer M and a string function f .

Input:w ⇒ Machine:M ⇒ Output:x
f(w) = x

A Moore machine or transducer is usually given by a 6-tuple

M = (A,X, S, start , δ, γ)

where A is the alphabet, X is a set of outputs, S is a set of states, start ∈ S is the
initial state, δ : S×A → S is the transition function and γ : S → Xis the output
function. While it is usual to limit Moore machines to finite state sets, and such
finite state machines are sufficient to represent any constructable digital system,
it’s convenient to have infinite state machines available for specifications. For
example, a hypothetical infinite counter may be useful in describing the periodic
behavior of a finite state device.

1 If that requirement is a problem the model can be adjusted. For example, we could
require that for any circuit element E, E(wa) = E(wc) for any samples a and c —
that is, there is at least one unit of delay between the application of a signal and
a response. A sensible limitation in any case. Because the output does not depend
on input, we can calculate the output using a dummy input. So for example make
c be any appropriate sample and let, wa 7→ (u1c1, u2c2) where c2(2) = N1(u1c) —
eliminating the interconnect delay.

6 Yodaiken Mar-16-10

Given M , use primitive recursion on sequences to extend the transition func-
tion δ to A∗ by:

δ∗(s, Λ) = s and δ∗(s, wa) = δ(δ∗(s, w), a). (19)

So γ(δ∗(start , w)) is the output of M in the state reached by following w
from M ’s initial state. Call fM (w) = γ(δ∗(start , w)) the representing function
of M . A representing function is “finite” if and only if it represents a finite state
machine.

The transformation from string function to transducer is via the well known
Nerode equivalence relation[2, 11, 10]. Given f : A∗ → X define fw(u) = f(w◦u)
where ◦ indicates string concatenation. Note that it is possible for w ̸= u but
fw = fu meaning that f(w ◦ z) = f(u ◦ z) for all z ∈ A∗. Intuitively fw = fu
when both lead to the same state. Let Sf = {fw : w ∈ A∗}.. Say f is finite if and
only if Sf is finite. Define δf (fw, a) = fwa and define γ(fw) = fw(Λ) = f(w).
Then with startf = fΛ we have a Moore machine

M(f) = {Sf , startf , δf , γf}

and, by construction f is the representing function for M(f). See section 5 for
a short discussion of the next step of abstraction: the monoid induced by the
state machine.

Any M2 that has f as a representing function can differ from M1 = M(f)
only in names of states and by including unreachable and/or duplicative states.
That is, there may be some w so that δ∗1(start1, w) ̸= δ∗2(start2, w) but since
fw = fw it must be the case that the states are identical in output and in the
output of any states reachable from them. If we are using Moore machines to
represent the behavior of digital systems, these differences are not particularly
interesting and we can treat M(f) as the Moore machine represented by f .

3.2 Products

Gecseg[4] describes a general automata product suitable to composition of digital
circuits that is used in a simplified way here and in a more general way in [16].
A more recent and more algebraic treatment is found in Domosi[3].

Suppose we have a collection of (not necessarily distinct) Moore machines
Mi = (Ai, Xi, Si, start i, δi, λi) for (0 < i ≤ n) that are to be connected to con-
struct a new machine with alphabet A using a connection map g. The intuition
is that when an input a is applied to the system, the connection map computes
an input for Mi from the input a and the outputs of the factors (feedback).

Definition 31 General product of automata for digital circuits
Given Mi = (Ai, Xi, Si, start i, δi, γi) and h and g where g(i, a,x) ∈ Ai, define
the Moore machine: M = An

i=1[Mi, g, h] = (A,X, S, start , δ, γ)

– S = {(s1 . . . , sn) : si ∈ Xi} and start = (start1 . . . , startn)

State machine solutions 7

– X = {h(x1 . . . , xn) : xi ∈ Xi} and γ((s1 . . . , sn)) = h(γ1(s1) . . . , γn(sn)).
– δ((s1 . . . , sn), a) = (δ1(s1, g(1, a, γ(s))) . . . , δn(sn, g(n, a, γ(s)))).

I’ll state without proof a theorem proved elsewhere that should be reasonably
obvious[16].

Theorem 1 If each fi represents Mi and f(w) = h(f1(u1) . . . , fn(un))
and when w = Λ, ui = Λ
and if when w 7→ (. . . ui . . .), then wa 7→ (. . . uici . . .) where ci = g(i, a, f(w)).
and M = An

i=1[Mi, h, g] then f represents M

4 More examples

Let’s step up the complexity of the examples to multi-output-pin circuits. In
this case, we just add another parameter to select which output pin is being
referenced. A single bit adder might output have output pins {sum, carryout} →
{0, 1} and accept input samples {v1, v2, carryin}.

D is a delay t adder iff and only if

H(w, carryin, b0) ≥ t and H(w, v1, b1) ≥ t and H(w, v2, b2) ≥ t →
D(w, carryout) = ⌊(b0 + b1 + b2)/2⌋ (20)

and D(w, sum) = (b0 + b1 + b2) mod 2

An n bit adder then has inputs that are maps from {carryin, v11 . . . v1n, v21 . . . v2n}
to {0, 1}. The output pins are {r1, . . . rn, cout}. In contrast to a gate, there are
never “do not care” inputs. Define Last(wa) = a. Define Stable(Λ) = 0 and

Stable(wa) =

{
1 + Stable(w) if a = Last(w)
0 otherwise.

Let LastIn1(w) = (Last(w)(carryin), Last(w)(v11), . . . Last(w)(v1n)) and
LastIn2(w) = (Last(w)(v21), . . . Last(w)(v2n)) Given a binary n-vector b =
(b1, . . . bn), define projection b[i] = bi and then unsigned(b) = Σn

i=1b[i] ∗ 2i−1

assuming both that the lower indexed bits are the lower order bits and that the
length of the vector is known. What we want of an n-bit adder V is that when
inputs have been stable for long enough Stable(w) > tadder.

(∗) unsigned(LastIn1(w)+unsigned(LastIn2(w)) = Σn
i=1V (w, ri)2

i−1+2nV (w, carryout)

We can construct a ripple carry adder as follows.

V is a constructed ripple carry adder with n bits if and only if

V (w) = (D1(u1, sum), . . . Dn(un, sum), Dn(un, carryout)) (21)

where each Di is a delay t single bit adder (22)

and if w = Λ then w 7→ (Λ, . . . Λ) (23)

8 Yodaiken Mar-16-10

and if w 7→ (u1 . . . , un) then

(wa) 7→ (u1c1 . . . , uncn) where

c1(carryin) = a(carryin), ci+1(carryin) = Di(ui, carryout) (24)

ci(v1) = a(v1i), ci(v2) = a(v2i) (25)

If t is the delay for the component adders, then we want to require that
Stable(n ∗ t+n) should imply (∗). I’m just going to present proof sketches since
the idea should be clear and the main claim here is that these proofs should
be reasonably easy to automate. I want to particularly show how component
properties can be pushed up the composition ladder because if P (f(w)) tells us
that f(w) has a property P and we can show it for all w, then P (f(ui)) must be
true. However, there are additional constraints on ui because of the definition of
the map from w to ui.

Proofs are usually by induction: one strings and on the component index.
First, there is a lemma for how long the output of an adder is stable when the
input is held stable. Recall the definition of #f above in equation 6 and consider
#D(w, sum).

Ignoring the composite system, say that t delay adder D must have the
property that:

Stable(w) ≥ t+ k → #D(w, sum) ≥ k and #D(w, carryout) ≥ k (26)

Note this w ranges over input sequences for single-bit adders - we’ll turn to w
for the n-bit adder below. Proof: Let w = Λ and there is nothing to prove since
#D(Λ) = 0 and Stable(Λ) = 0. Suppose the lemma true for w and consider wa.
Suppose #D(w) = j and consider #D(wa) where we extend the #f notation to
allow for pin arguments. If k = 0 then all we have to prove is that #D(w) ≥ 0
which is trivially true. So consider k > 0 and Stable(wa) ≥ t + k′ + 1 for
some k′ ≥ 0. Note that Stable(w) = j implies that H(w, p, bp) ≥ j for each
input pin p for some value of bp. So by the definition of an adder the outputs
of D are determined when Stable(w) ≥ t + k. From the definition of H we
have H(wa, p, bp) ≤ H(w, p, bp) only when H(wa, p, bp) = 0 which we know
is false (or else Stable(wa) = 0. So H(w, p, bp) < H(wa, p, bp) which means
H(wa, p, bp) = 1 +H(w, p, bp) so H(w, p, bp) = t+ k′ and k′ ≥ 0 so H(w, p) ≥ t
which means that the outputs at state w were determined by the inputs which
have not changed by state wa. QED.

Now switch back to the composite structure. By construction, H(w, v1i, b1i)
= H(ui, v1, b1i) and H(w, v2i, b2i) = H(ui, v2, b2i) and H(w, carryin, b0) =
H(u1, carryin, b0). So by the lemma at 26 and the initial assumption #D1(u1) ≥
(n − 1)t + n since the inputs have been stable for n ∗ t + n. Now we note that
for i > 1, we must have #Di−1(ui−1) + 1 ≤ H(ui, carryin, bi). The proof is by
induction using the definition of the mapping from w to the ui. This tells us that
the inputs for #D1(u1) ≥ t+ k + 1 → #Di(ui) ≥ k. The 1 gets lost because of
the 1 unit delay between output pins and input pins - see the note above. At
this point it’s a matter of putting the parts together to complete the proof.

State machine solutions 9

5 Discussion

Earlier papers by the same author [14, 15] proposed the use of the general prod-
uct for modelling composition and concurrency, but suffered from too much use
of the “formal methods” approach. The proofs carried out here were not really
feasible using formal logic. There is a good reason why mathematicians rele-
gate formal logic to “meta mathematics” and why “working mathematics”, the
language of applied mathematics, science, and engineering, is not formalized in
practice. Similarly, augmented state machines don’t have the underlying math-
ematical coherence of ordinary state machines via Myhill/Nerode congruences
and the well known connection to semi-group theory. Instead, for example, in-
put/output automata [8, 9] take us into the realm of “process algebras” and
similar constructs.

It well known that every state machine induces a monoid, and there is a
decomposition theory for state machines that parallels and extends group de-
composition via the Jordon-Holder theorem. The researchers who first looked
at algebraic automata theory such as Hartmanis[6] were focused on so-called
“cascade” products in which there is no feedback[2, 7, 5]. For example, the com-
posed nand-gate above has no feedback between the ui — information moves in
one direction only. The constructed SR latch, on the other hand, requires that
the output of N1(ui) be fed back into u2. The standard digital architecture dis-
tinction between combinational and sequential circuits appears related to this
distinction.

Recall Sf the state set induced by f : A∗ → X. Let Mon(f) be the monoid
consisting of the set of maps σw : Sf → Sf for w ∈ A∗ so that σwfu = fu◦w and
the operation σuσz = σu◦z. The set of maps will be a superset of Sf because
fw = fz does not imply that σw = σz since σwfu = fu◦w which may be distinct
from σzfu − fu◦z. But if Sf is finite then Mon(f) must be finite and certainly
σΛ is the identity and

σw(σuσv) = σw◦u◦v = (σwσu)σv.

The product used here was ignored by the pioneers of algebraic automata the-
ory for a variety of reasons, but perhaps one of them was that the practitioner
interest was in state minimization which leads naturally to questions of decom-
position. The full generality of feedback products also loses the analogy to the
Jordon-Holder series that is key to the Krohn-Rhodes decomposition. But the
product used here is quite constrained. Each ci(p) = a(p′) or ci(p) = Gj(uj , p

′)
where Gi is a component factor because the communication mimics the connec-
tion of wires so that no computation can be done in the connection map. There
are additional constraints imposed by fan-out and fan-in limits and we may want
more constraints such as the E(wa) = E(wa′) constraint mentioned above that
prevents instant response to inputs. We can conjecture that this constrained
product also has structural implications for the construction of monoids. With
the caution that what follows is extremely early conjecture let’s look at some
possibilities relating combinations versus sequence circuits to group structure.

10 Yodaiken Mar-16-10

What we call combinatorial circuits in digital circuit engineering seems to pro-
duce state systems with only trivial loops - wherefw = fwa. This limits the
complexity of subgroups within the underlying monoid. So products with non-
trivial feedback may be the only ways to introduce longer loops into the state
structure.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. Michael A. Arbib. Theories of Abstract Automata. Prentice-Hall, 1969.
3. Pal Domosi and Chrystopher L. Nehaniv. Algebraic Theory of Automata Networks

(SIAM Monographs on Discrete Mathematics and Applications, 11). Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2004.

4. Ferenc Gecseg. Products of Automata. Monographs in Theoretical Computer Sci-
ence. Springer Verlag, 1986.

5. A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.
6. J. Hartmanis. Loop-free structure of sequential machines. In E.F. Moore, editor,

Sequential Machines: Selected Papers, pages 115–156. Addison-Welsey, Reading
MA, 1964.

7. W.M.L. Holcombe. Algebraic Automata Theory. Cambridge University Press, 1983.
8. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.

In Proceedings of the 7th ACM Symposium on Principles of Distributed Computing,
pages 137–151, 1987.

9. Nancy Lynch. Input/Output Automata: Basic, Timed, Hybrid, Probabilistic, Dy-
namic,..., volume 2761/2003 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2003.

10. J. Myhill. Finite automata and the representation of events. Technical Report
WADD TR-57-624, Wright Patterson Air Force Base, 1957.

11. A. Nerode. Linear automaton transformations. In Proc. AMS, 1958.
12. Ramzi Ben Salah, Marius Bozga, and Oded Maler. On timed components and their

abstraction. In SAVCBS ’07: Proceedings of the 2007 conference on Specification
and verification of component-based systems, pages 63–71, New York, NY, USA,
2007. ACM.

13. John F. Wakerly. Digital Design Principles and Practices: 4th edition. Prentice
Hall, 2005.

14. Victor Yodaiken. The algebraic feedback product of automata. In DIMACS Work-
shop on Computer Aided Verification, 1989.

15. Victor Yodaiken. Modal functions for concise representation of finite automata.
Information Processing Letters, Nov 20 1991.

16. Victor Yodaiken. Primitive recursive presentations of automata and their products.
CoRR, abs/0907.4169, 2009.

