
Reliable Broadcast Protocols
JO-MEI CHANG and N. F. MAXEMCHUK
AT&T Bell Laboratories

A reliable broadcast protocol for an unreliable broadcast network is described. The protocol operates
between the application programs and the broadcast network. It isolates the application programs
from the unreliable characteristics of the communication network. The protocol guarantees that all
of the broadcast messages are received at all of the operational receivers in a broadcast group. In
addition, the sequence of messages is the same at each of the receivers and a total ordering exists
among all broadcast messages. This unique message sequencing can be used to simplify distributed
database systems and distributed processing algorithms.

The protocol can operate with as few as one acknowledgment message per broadcast message,
instead of one acknowledgment from each receiver per broadcast message. The protocol continues to
operate when sites in the broadcast group fail.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design--distributed networks; network communications; C.2.2 [Computer-Commu-
nication Networks]: Network Protocols--protocol architecture; C.2.5 [Computer-Communica-
tion Networks]: Local Networks--access schemes; C.4 [Computer Systems Organization]: Per-
formance of Systems--performance attributes

General Terms: Algorithms, Design, Performance, Reliability

Additional Key Words and Phrases: Broadcasting, multicasting, message sequencing, failure recovery

1. INTRODUCTION
Broadcas t ne tworks are c o m m o n bo th in local area c o m m u n i c a t i o n sys tems [4,
6, 7, 9] a n d in long haul sa te l l i te sys t ems [8]. Messages t r a n s m i t t e d in these
ne tworks are ava i lab le to all receivers; however , some or all of the receivers ma y
lose a message because of t r a n s m i s s i o n errors or because a buf fe r overflows w i t h i n
a receiver. On p o i n t - t o - p o i n t c o m m u n i c a t i o n l inks , pro tocols are i m p l e m e n t e d to
recover lost messages. W i t h o u t a s imi la r protocol , des igned for a b roadcas t l ink,
the capabi l i t ies of th i s type of ne twork c a n n o t be fully u t i l i zed by app l i ca t ions
b roadcas t or mul t i cas t .

I n th is paper , a protocol is p r e s e n t e d t h a t al lows groups of si tes on un re l i ab l e
b roadcas t ne tworks to re l iably b roadcas t messages [1, 2]. T h e protocol gua ran t ee s
t h a t all of the receivers in a group receive the b roadcas t messages a n d t h a t each
of the receivers order the messages in the same sequence. I t will be show n t h a t
for each b roadcas t message m u c h less t h a n one a c k n o w l e d g m e n t per receiver is
required.

Authors' address: AT&T Bell Laboratories, Murray Hill, NJ 07974.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0734-2071/84/0800-0251 $00.75

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984, Pages 251-273.

252 • J.M. Chang and N.F. Maxemchuk

XA

TRANSMIT
ROUTINE

xp I

APPLICATION
PROGRAMS

RA

'-RECEIVER
ROUTINE

APPLICATION
PROTOCOLS

BROADCAST
PROTOCOL

XMIT

QO

TRANSMISSION
PROTOCOL

IDDE ERROR
TECTION

RECEIVE
Ql

TRANSMISSION
PROTOCOLS

PHYSICAL MEDIUM
Fig. 1. Protocol description.

Requiring all of the receivers to order the messages in the same sequence is
stricter than just requiring them to obtain all of the messages. However, this
property is useful in distributed processing systems. If processes residing at
different sites receive messages in the same sequence, they can arrive at the same
conclusion without additional communications. Unique message sequencing can
be used to simplify the design of concurrency control and crash recovery proce-
dures in distributed database systems [3].

2. SYSTEM DESCRIPTION AND FAILURE ASSUMPTIONS

2.1 System Description
The broadcast protocol operates between the application level protocols and the
transmission protocols, as illustrated in Fig. 1. At each site, application level
programs transmit messages across the interface XA and receive messages across
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 253

the interface R~. For any transmitter, all of the messages transferred across
interface XA are delivered to the receivers in the same sequence. This sequence
is preserved by transmitting one message at a time until the message is acknowl-
edged. It is uncertain how these messages will be sequenced with respect to
messages from other transmitters; however, the broadcast protocol guarantees
that the sequence will be the same at every interface RA.

The transmission protocol provides a datagram service [8] to the broadcast
protocol. All messages from the broadcast protocol are transmitted as isolated
units. The transmission protocol is responsible for acquiring the communication
channel, transmitting messages, and accepting messages destined for the broad-
cast group. The receiver in the transmission protocol discards messages with
transmission errors. Messages may also be lost because Qi overflows. It is the
responsibility of the broadcast protocol to retransmit lost messages and to
sequence the received messages. When a broadcast message is first received in
Qi, it is not committed and cannot be read by the application programs. It remains
uncommitted until the broadcast protocol can guarantee that this message will
be received by all of the operational receivers. The broadcast protocol will then
commit the message by passing it across the interface RA to the application
programs.

Messages transmitted on the broadcast network have a destination address. A
broadcast group consists of N sites; each of the N sites can transmit and receive
broadcast messages addressed to this group. Other addresses on the network can
be used for point-to-point communications or for other broadcast groups. A
receiver that is capable of recognizing several addresses can belong to several
broadcast groups as well as conducting point-to-point communications.

2.2 Failure Assumptions
The following failure assumptions are made:

(1) We assume that when a site fails, the site simply stops processing. It does
not send malicious messages or perform incorrect actions.

(2) Messages may be lost because of buffer overflow or they may be discarded
because of transmission error. An arbitrary number of messages may be lost;
however, all of the messages processed at a site are free of transmission errors.

(3) A failure may be due to a communication failure or a site failure. A failure
occurs when a site in the broadcast group fails to communicate with another site
after R attempts. A site that fails to respond is assumed to be nonoperational. A
site recovers and becomes operational when it reestablishes communication with
sites in the broadcast group. It is possible that a site is mistakenly assumed to
have failed. The parameter R should be large enough that this will happen
infrequently and small enough that failures can be detected in a reasonable
amount of time.

3. PHILOSOPHY

Consider a system with multiple transmitters and receivers in a broadcast group.
The most straightforward way to implement a reliable protocol is to retransmit
the broadcast message until an acknowledgment is received from each of the

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

254 J.M. Chang and N. F. Maxemchuk

Ri: Rece ive M1, Rece ive M2.

Rj: (miss MD, Rece ive M2, Rece ive M1.

Fig. 2. Positive acknowledgment system.

receivers. This is a positive acknowledgment system. If N sites must receive the
message, at least N acknowledgments must be transmitted. This protocol does
not guarantee that each of the receivers obtain the broadcast messages in the
same sequence. For instance, consider the following example with two receivers.
Source SA broadcasts message M1, which is received by Ri but missed by Rj.
Meanwhile, another source S~ broadcasts message M2 which is received by both
Ri and Rj. Finally, SA retransmits M1 which is received by Rj. Ri receives M1
before M.~ and R~ receives M2 before M~, as illustrated by Fig. 2.

In a system with a single receiver or a single transmitter, reliable protocols can
be implemented which sequence the received messages and may require fewer
acknowledgments than the above protocol. In the system described above, if
there is a single receiver and many sources, there is only one sequence of received
messages, and one acknowledgment per broadcast message. When there is a
single source and many receivers, sequencing messages at all of the receivers is
trivial. The source assigns a sequence number to each message. It is not necessary
for receivers to explicitly acknowledge messages. Messages that are lost are
detected when a higher sequence number than expected is received, and retrans-
missions of the lost messages can be requested. Eventually, the proper sequence
of messages is obtained by all of the receivers. This is a negative acknowledgment
system.

In general, a broadcast protocol must operate between many sources and many
receivers. The philosophy of the proposed protocol is to make the general system
appear to be a combination of two simple systems, one with a single receiver and
the other with a single transmitter. A system with many transmitters can be
made to look like a system with a single transmitter by passing all of the messages
through a primary receiver, which will be called the token site. This receiver
appears to be a funnel through which all messages must pass, as shown in Fig. 3.
The system operates as a positive acknowledgment system between the sources
and the token site. The token site transmits one acknowledgment for each
message from the sources. The acknowledgment contains a sequence number,
called a timestamp. The system operates as a negative acknowledgment system
between the token site and the remaining receivers. The remaining receivers use
the timestamp to detect missing messages; they then request the missing ac-
knowledgments and the acknowledged messages. The receivers place the messages
in the sequence in which the token site acknowledged them. They do not transmit
any messages if no messages are lost. Therefore, this protocol uses one acknowl-
edgment per broadcast message.

There are two deficiencies with this protocol:

(1) In a negative acknowledgment system, there is no way to know when the
receivers obtain the messages. Broadcast messages must thus be retained indef-
initely for possible retransmission.
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

SOURCES

Reliable Broadcast Protocols ° 255

TOKEN PASSING
POSITIVE ACKNOWLEDGEMENT

' / POSI t iVE
- - ACKNOWLEDGEMENT/ / " •

NEGATIVE X ' ~ .""
. .~ACKNOWLEDGEMENT ~

Fig. 3. Reliable broadcast protocol.

(2) When the token site fails, messages that it has acknowledged, but that
have been missed by all of the other receivers, may be lost.

These deficiencies are eliminated by rotating the token site responsibility
among all of the operational sites, requiring a receiver to have all of the
timestamped messages before accepting the token, and requiring at least L
additional receivers to accept the token before committing a message. The list of
operational sites is called the token list. The token is transferred as part of an
acknowledgment message. When a site accepts the token, all of the other sites
in the token list have accepted the token since last time this site did. Therefore,
all of the messages acknowledged the last time this site had the token have been
received by all of the operational sites and will no longer have to be retransmitted.
Only a finite number of broadcast messages must be retained for possible
retransmission. Furthermore, if L sites accept the token after a message is
acknowledged, at least L + 1 sites have the message and at least L + 1 sites
would have to fail for the message to be lost.

The protocol provides mechanisms to detect site failures. The token site must
acknowledge broadcast messages and is responsible for servicing retransmission
requests from the other receivers. Token site failures are detected when a source
cannot obtain an acknowledgment for a broadcast message or when one of the
receivers cannot recover lost messages. A message which transfers the token is
retransmitted until an indication is received that the next site has either accepted
the token or failed. If there are N sites in the token list, any failure is detected
within N token transfers.

The system alternates between two phases, a normal phase and a reformation
ph.ase. During the normal phase, messages are acknowledged and the token is
passed. When a failure is detected or a site recovers, the system enters a
reformation phase. During the reformation phase, a new token list is generated.
The normal phase is described in Section 4, and the reformation phase is
described in Section 5.

4. NORMAL PHASE

During normal operation, sources broadcast messages. Some receivers may lose
messages because of transmission errors or buffer overflows. However, the
protocol guarantees that each operational receiver will acquire the broadcast

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

256 J.M. Chang and N. F. Maxemchuk

messages that have been lost and that all of the receivers will place the messages
in the same sequence.

If sites in the broadcast group are using different token lists, a reformation
will occur. In addition, a reformation occurs when certain messages do not receive
a response. The following messages solicit responses:

(1) When a broadcast message is transmitted, an acknowledgment is expected
from the token site.

(2) When a retransmission is requested, the retransmitted message is expected
from the token site.

(3) When a token is transferred, a confirmation from the next token site is
expected.

If the site responsible for responding to one of these messages does not transmit
any messages during R successive retransmission attempts, it is assumed that
that site has failed.

4.1 Operation of the Protocol
Each site i maintains the following information:

--tli, the version number of the token list it is using;
--Mi[s], the number of the next broadcast message it expects from site s;
--ntsi, the next timestamp it expects to receive.

During the normal phase, a site is committed to one token list tli. All of the
messages transmitted identify this token list, and only sites using the same token
list communicate. Mi[s] is used to differentiate between new messages from
source s and messages which have been acknowledged. It prevents a broadcast
message from being acknowledged more than once. The purpose of ntsi is to
ensure that site i obtains all of the acknowledgments and acknowledged messages
in the proper sequence. When the normal phase starts, all of the sites in the
token list tli have the same values for ntsi and Mils]. One site is given the token
and can transmit an acknowledgment with this timestamp.

There are three phases in broadcasting a message: transmitting, timestamping,
and committing.

Transmitting. A source retransmits a broadcast message until it receives an
acknowledgment for the message. This is a positive acknowledgment system. If
the token site does not transmit any messages during R successive retransmission
attempts, the source assumes that the token site has failed.

Each broadcast message contains an identifier B(s, n} which identifies the
source s and the message number n = M,[s] from the source. The next broadcast
message from a source is not transmitted, and the message number at the source
is not incremented, until an acknowledgment is received. Therefore, successive
messages from source s have incrementally increasing sequence numbers. This
allows broadcast messages to be uniquely identified.

Timestamping. The token site acknowledges broadcast messages. When the
token site, at i, receives a broadcast message B(s, n) for which Mi[s] = n, it
assumes that this message has not been acknowledged. The token site transmits
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 257

an acknowledgment, ACK(ntsi, B (s, n)). Each acknowledgment message indicates
which site will transmit the next acknowledgment. Because of the resiliency
requirements, described below, a site occasionally transfer the token when there
are no broadcast messages to be acknowledged. It does this by transmitting
ACK(ntsi, NULL), which is an acknowledgment to a NULL message.

The receivers store broadcast messages in a queue QB and process the acknowl-
edgments in the order they are received. At site i, ACK(ts, B(s, n)) is only
processed when ntsi = ts and B (s, n) is the NULL message or B (s, n) is in QB.
When acknowledgment ts is procesed, ntsi is incremented and if a message has
been acknowledged, the next message from the source is changed to Mi[s] --
n + 1. If ts < nts~, this acknowledgment has been previously processed and is not
processed again. If ts > nts~, acknowledgment messages have been lost. Before
processing acknowledgment ts, the missing acknowledgments are requested and
processed. If B(s, n) the broadcast message being acknowledged, is not in QB, it
must be obtained before the acknowledgment is processed. Retransmission re-
quests are retransmitted until the requested message is received, or until a failure
occurs. Any acknowledgments that are received while waiting for a retransmitted
message are stored in a queue Qc and are processed in the order they arrive.

Committing. After the message is timestamped and the token is transferred
L times, it is certain that L + 1 sites have obtained the broadcast message. At
this time the message is committed and transferred to the application program.
As long as L or fewer sites in the token list fail, all committed messages can be
recovered during the reformation phase. This is referred to as an L-resilient
system.

In order to guarantee that an acknowledged message can be committed, the
token must be transferred L times after the message is acknowledged. A token
site with an uncommitted message waits a period T for a new broadcast message.
If there are no new messages, it transmits ACK(ntsi, NULL). This procedure
guarantees that the system cannot become deadlocked because a critical message
cannot be committed. There is a tradeoff between the commit delay and the
number of messages transmitted by the protocol. Resiliency is obtained by
introducing commit delay or additional messages. This tradeoff is examined in
Section 6. This procedure does not guarantee that every receiver has committed
the message. By continuing to pass the token after the last message is committed,
the probability that the message is committed everywhere increases. When the
token is transferred around the entire token list back to the site which acknowl-
edged it, it is certain that every site has received the message. If the token is
transferred further, until it reaches the site which caused the message to be
committed, it is certain that every site has committed the message.

4.2 Token Site

In addition to acknowledging messages, the token site is responsible for transfer-
ring the token to the next token site and for responding to retransmission
requests.

The token transfer is a positive acknowledgment system. A site continues to
transmit an acknowledgment which transfers the token until it receives a message

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

258 J.M. Chang and N. F. Maxemchuk

from the next token site which indicates that it has accepted the token. If the
next site receives a broadcast message and transmits an acknowledgment, or
transfers the token to commit a message, this constitutes accepting the token. If
there are no new messages or uncommitted messages, the next site transmits a
confirmation message and retains the token until a new broadcast message is
received. This strategy guarantees that the token will be transferred between two
sites that can communicate. Since the token is transferred as part of the
acknowledgment message and since the next site can accept the token by
transmitting an acknowledgment, the token transfer operation does not generate
any additional messages when there are broadcast messages to be acknowledged.

The next token site accepts the token when it can process the acknowledgment
that transfers the token to it. Therefore, when a site accepts the token, it has
received all of the acknowledgments and acknowledged broadcast messages that
may be requested. This site responds to all retransmission requests. It continues
to answer retransmission requests until it is certain that the next site has accepted
the token. If it did not, the next site would not be able to recover lost messages.
If the token site misses the message which indicates that the next site has
accepted the token, retransmission requests may be answered by more than one
site. All sites which have accepted the token have the same set of messages, and
the requesting site can simply discard the redundant response. This strategy
guarantees that at least one site which is responsible for answering retransmission
requests has all of the messages up to the last transmitted timestamp. Since the
retransmission requests are retransmitted until a response is obtained, a missed
message will be recovered as long as a communication failure does not occur.

Messages that require a response are retransmitted if the response is missed.
The token site treats these messages as if they were retransmission requests for
the response. If a previously acknowledged broadcast message is received, the
site servicing retransmission requests assumes that the source missed the ac-
knowledgment, and the acknowledgment is retransmitted. If an old acknowledg-
ment is received, this site assumes that a previous token site missed the message
that assumed token site responsibility, and this message is retransmitted.

The interaction between the sites is summarized in Fig. 4. The processing
strategy at the receivers guarantees that all of the sites in the broadcast group
place broadcast messages in the same sequence. The positive acknowledgment
strategy guarantees that a broadcast message will be acknowledged as long as all
sites in the broadcast group can communicate. The token passing strategy forces
all sites to recover missing messages. The retransmission strategy guarantees
that sites can recover missing messages. Therefore, during the normal phase of
the protocol all of the operational sites in the broadcast group will receive, and
thus commit, broadcast messages in the same sequence.

5. REFORMATION PHASE

The protocol enters the reformation phase when a failure or recovery is detected.
Initially, the token list consists of all of the sites in the broadcast group. When
a failure or recovery is detected, the reformation process redefines the token list
and elects a new token site. The process is complete when a new token list is
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

W

Z
I~J

!

X

Z

Z
oO ~_

_~ @~ ,.,

>.Jl--O ~ - -

I--

Z

v
0

W

0

~D
0

"1-
0

W

0

Z z w

0

n-
v LIJ
0 U_

X

z

~.0
¢00

I -
(/) z ¢.) - -
r ~ v
n." (.~

I,,- t -

v LLI
0 ar

J d

Z

m m ~

Z

0 8 o
I---

" ~ o

~ r ~
r ~ O O C
~ n n

Z Z

~___._m

, n I I

r~
bJ

0
LIJ

I -

X
I.d
n,-

u l
¢,r

I - ~/)
Z --~ Z

LLI

I.LI 0

I-- I--

ILl U.I
O. I--
bJ U.I
n.- CS)

Q
J >

Z
~ Z

0 v -
O F -

, , , , ' 7
I~. z
w O

a
z >
i . u ¢ ~
T n "

~ z
- - I . ~ 0

O O Z
I--- W 0
if) el¢ ¢..~

I'--
X tLJ
w ~
z N
I--- W

o

be.

0

0

.#

260 • J.M. Chang and N. F. Maxemchuk

formed and a new token is generated and accepted by the new token site. Th e
protocol then resumes normal operation.

During the reformation, failures can occur. The reformat ion protocol must be
robust against an arbi t rary number of lost messages and must not be blocked if
sites fail during the reformat ion process. Fur thermore , a site may fail to com-
municate with the token site or the next token site because of repeated commu-
nication failures ra ther than because the site has failed. Th e reformat ion process
ensures tha t

(1) only one valid token list can exist at any time;
(2) none of the commit ted messages from the old token list are lost.

5.1 A Valid List
Any site tha t detects a failure or recovery initiates a reformat ion and is called an
originator. It invites other sites in the broadcast group, the slaves, to form a new
list. The reformat ion process can be described in terms of the activities of sites
joining and committing a valid list. A valid list satisfies a set of specific require-
ments, as explained below. When the reformat ion starts, a site is invited to join
a new list and eventually commits to a valid list. When all of the sites in a valid
list are commit ted to this list, the list will be authorized with a token and the
reformation terminates. This list becomes the new token list.

Multiple originators can exist if more than one site discovers the failure or
recovery. During the reformation, it is possible tha t acknowledged messages from
the old token list have been missed by all sites tha t join a new list. To guarantee
tha t there is only one new list and tha t this list has all of the commit ted messages,
the list must be tested before it can be considered a valid list. Specifically, a list
becomes valid if it passes the majority test, the sequence test, and the resiliency
test.

Majority Test. The majority test requires tha t a valid list has a majori ty of
the sites in the broadcast group. During the reformation, a site can join only one
list. The majority test is necessary to ensure tha t only one valid list can be
formed.

Sequence Test. T h e sequence test requires tha t a site only join a list with a
higher version number than the list it previously belonged to. Th e version number
of a token list is in the form of (version #, site number) . Each site has a unique
site number. When a new list is formed, the originator chooses the new version
to be the version # of the last list it has joined plus one. Therefore , token lists
have unique version numbers. The originator always passes the sequence test. If
any of the slaves fail the sequence test, it tells the originator its version number.
The originator increments the higher version # the next t ime it tr ies to form a
new list.

The combinat ion of the majority and the sequence test ensures tha t all valid
lists have increasing version numbers. This is t rue because any two valid lists
must have at least one site in common, and a site can join a second list only if
the second list has a higher version number. Therefore , the version numbers
indicate the sequence in which token lists were formed.
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 261

Resiliency Test. The resiliency test ensures tha t none of the messages com-
mit ted by the old token list are lost. It also ensures tha t the old token list can no
longer be effectively used by any site tha t is not aware of the reformation. In an
L-resilient system, a commit ted message must be received by the L sites following
the site tha t acknowledges the message; therefore, at least L + 1 sites have
received it. If the new list consists of one of the L + 1 sites following the site tha t
assigned the largest known t imestamp in the old token list, none of the commit ted
messages can be lost. This also ensures tha t the old token list does not have all
of the sites needed to commit additional messages.

To perform the resiliency test, the old token list and the last t imestamp issued
by this list must be determined. When a site i agrees to join a list, it tells the
originator the t imestamp of the next message to be processed, ntsi, and its token
list version number. The list with the largest known version number is considered
to be the old list. This is the list tha t the resiliency test of the new list is based
on. The resiliency test is successful if the new list consists of ei ther the site tha t
is expected to issue the largest known next t imestamp of the old list or one of
the L sites following it in the old list. The resiliency test is explained fur ther in
Section 5.2.

When a valid list is formed, a new token site has to be elected and its s tar t ing
t imestamp has to be determined. The site tha t nominates the largest known next
t imestamp has the most complete information regarding the old list. This site is
elected as the new token site. The start ing t imestamp of the new list equals the
largest known next t imestamp of the old list. The new token site has all the
messages up to this t imestamp. Before resuming normal operation, each site in
the new list recovers any missing message from the new token site. This
guarantees tha t the system is still L-resilient when the new list is used. Note
tha t once a site joins a new list, even if the new list cannot be successfully formed,
the site will not use the old list to process messages. Therefore, once a new list
passes the resiliency test, the list tha t it bases its test on is, and remains, inactive.

When a site recovers from failure, it discards all of its uncommit ted messages
and requests retransmissions from the new token site. Note tha t this site may
have received messages before its failure which were missed by the new token
site. These messages are discarded. Therefore, the recovered site has the same
message sequence as the new token site. A recovered site must also obtain (from
the new token site) MNTs[S], the number of the next broadcast message from
each site in the broadcast group. Consequently, each site in the new list, including
a recovered site, can differentiate between a new broadcast message and a
previously acknowledged message.

5.2 A Reformation Protocol

The reformation protocol is described in Fig. 5. It is a three-phase protocol for
the originator and the new token site and a two-phase protocol for the slaves. In
Phase I, the originator forms a new list. In Phase II, if the new list passes the
majority and resiliency tests, it is announced to the slaves, and a new token site
is elected. In Phase III, the new token site is authorized: a new token is generated
by the originator and passed to the new token site. After accepting the token,

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

262 • J.M. Chang and N. F. Maxemchuk

Phase I:

Phase II:

Phase III:

Phase I:

Phase If:

Phase III:

When a failure of recovery is detected, start Reformation;
Broadcast an invitation to all sites in the broadcast group.
Wait for either all responses received or TIMEOUT~*;
If (all responses = "yes" and pass Majority and Resiliency Tests)

New TL -- lall sites responded};
Announce New TL to all sites in the New TL;

Else
Announce "Reformation Abort" to all sites in the New TL*;
Modify TL version number, Wait and Restart;

Wait for either all responses received or TIMEOUTI;
If (All responses from sites in New TL = "Yes")

Generate "a New Token" and pass to New Token Site;
Commit New TL;
End of Reformation Phase;

Else
Announce "Reformation Abort" to New Token site;
Wait and Restart;

(a)

Wait for "Reformation Invitation" is received;
If (Sequence Test passes and j does not belong to any reformation list)

Vote "Yes";
Else Vote "No";
Wait for either "New TL", "Abort" is received, or TIMEOUTi;
If ("New TL" is received)

If (j still belongs to this list)
Recover all missing and then Vote "Yes"; messages
Commit the New TL;
End of Reformation Phase (except the new token site);

Else Vote "No";
If ("Abort" is received or TIMEOUTi)

Leave the list that previously joined.
Wait and Restart;

(b)

Wait for either "New Token," "Abort," or TIMEOUTk;
If ("a New Token" is received and j still belongs to this list)

Accepts the token and Starts Acknowledging Messages;
End of Reformation Phase;

If ("Abort" is received or TIMEOUTk)
Wait and Restart;

(c)

Fig. 5. (a) Reformation protocol for originator site i. (b) Reformation protocol for
slave j including new token site. (c) Authorization phase for new token site k. (The
asterisk indicates that each slave has been given R opportunities to respond.)

t h e n e w t o k e n s i t e r e s u m e s n o r m a l o p e r a t i o n a n d a c k n o w l e d g e s b r o a d c a s t m e s -
sages .

S p e c i f i c a l l y , in P h a s e I, a n o r i g i n a t o r s e n d s o u t a n i n v i t a t i o n t o a l l o f t h e s i t e s
in t h e b r o a d c a s t g r o u p to f o r m a n e w l is t . T h e i n v i t a t i o n c a r r i e s t h e n e w t o k e n
l i s t v e r s i o n n u m b e r . A s l a v e s i t e c a n o n l y j o i n o n e l i s t a n d i t c a n o n l y j o i n a l i s t
t h a t p a s s e s t h e s e q u e n c e t e s t .
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 263

The originator enters Phase II when any negative response is received or when
every site in the broadcast group has ei ther responded or has failed to respond
after R attempts. If all responses are positive, the new list consists of all of the
sites tha t have responded. The majority and resiliency tests are applied to the
new list. A new token site and a start ing t imestamp are also determined. A valid
list is announced to all of the sites in the new list. If the list is not valid or if a
negative response is received, the originator aborts the reformation process and
releases its members.

To prevent the reformation process from being blocked when the originator
fails, a site leaves a list if no messages are received from the originator during a
specific timeout period. Therefore, a site may join one list, release itself af ter a
t imeout, and join another list. Because a site can leave a list, in Phase II a slave
is required to acknowledge receiving the valid list. If a slave has already left this
list, it responds negatively. A slave can respond positively only if it still belongs
to this list and has recovered all missing messages. A site missing any message
will first request retransmissions from the new token site. After recovering all
missing messages, the slave commits to the new list and resumes normal opera-
tion.

The new token site has all of the messages up to the start ing t imestamp of the
new list. When the new list is announced, if the new token site still belongs to
the new list, it answers retransmission requests from the other slaves. If the new
token site has already left this list, it votes negatively and ignores retransmission
requests.

In Phase III, if a unanimous vote is obtained, the originator authorizes the
creation of a new token at the new token site. When the new token site receives
this token, and if the new token site has not yet left the list, it accepts the token
and starts acknowledging broadcast messages. The reformation phase is now
complete. If the originator cannot obtain a unanimous vote from the slaves, it
notifies the new token site to abort the reformat ion process.

The reformation process may be aborted because there are multiple originators
or because a failure occurs. Any time a site leaves a list due to an abort message
or a t imeout, it waits for a random period of t ime and then restarts the
reformation process. The random wait period reduces the possibility tha t two
sites initiate the reformation process simultaneously. This process is repeated
until a new token site successfully accepts the token. Eventually, if enough sites
remain operational in the system, a valid list will be formed and a new token site
will be authorized.

The existence of aborted lists creates the following problems:

(1) A site could be commit ted to an aborted list while other sites have left the
list due to a t imeout. Therefore, operational sites could temporari ly be commit ted
to different lists.

(2) If a site in a new list was last commit ted to an aborted list, this list, having
a higher version number than the old token list, will be used for the resiliency
test of the new list.

These two problems are handled by the reformation protocol.
First, sites could be commit ted to different lists. However, if a new token site

is not authorized, this token list is never used to acknowledge broadcast messages.
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

264 J.M. Chang and N. F. Maxemchuk

Sites commit ted to this list will eventually assume tha t the new token site has
failed and s tar t a reformation. Meanwhile, sites tha t have not commit ted to this
list, because of a t imeout or an abort message, will also restar t the reformat ion
process. In ei ther case, another reformat ion will start. Because a unanimous vote
is required, when a token site is successfully authorized all sites in the list are
commit ted to the list.

Second, the old list determined by the resiliency test is not the old token list.
The function of the resiliency test is to ensure tha t the old token list is inactive
and tha t the new token site elected has all of the commit ted messages from the
old token list.

Old Token List Inactive. The combinat ions of the tests guarantee tha t if the
new list is valid, the tested old list has a version number greater than or equal to
the old token list. As discussed in Section 5.1, once a new list has passed the
resiliency test, the old list tha t it is based on remains inactive. Therefore , a valid
list formed after the old token list ensures tha t the old token list is inactive.
Although the resiliency test is based on an aborted list, because the aborted list
must have a version number greater than the old token list, the old token list
must be inactive.

New Token Site Has All Committed Messages. Since a site must recover all
messages from the new token site before it is commit ted to a list, and the new
token site of an aborted list must have all of the commit ted messages from the
old token list, any site tha t has commit ted to the aborted list has all of the
commit ted messages from the old token list. When one of these sites is elected
as the new token site, it is capable of answering all retransmission requests and
none of the commit ted messages from the old token list can be lost.

6. PROTOCOL PERFORMANCE
In the protocol defined, the token can be passed after several broadcast messages
are t imestamped, each t ime a broadcast message is t imestamped, or several t imes
for each broadcast message t imestamped. The broadcast message can be com-
mit ted to the list of sequenced messages as soon as it is acknowledged or af ter
the token has been passed to L additional sites. The token passing frequency and
the commit delay define a family of broadcast protocols with different storage
requirements, resiliency to failures, message delays, and numbers of control
messages.

In Section 6.1, the number of control messages t ransmi t ted per broadcast
message and the storage required in an error-free envi ronment is analyzed. The
total number of messages t ransmi t ted per broadcast message increases when
messages are lost. In Section 6.2, the performance of the protocol under different
error rates is analyzed and compared with simulation results.

6.1 Message Analysis
The control messages used in the protocol consist of acknowledgments, token
passing messages, and confi rmat ion messages. Th e protocol t ransmits one ac-
knowledgment per broadcast message. The number of token passing messages
depends upon the token t ransfer rate. A confi rmat ion message is t ransmi t ted to
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 265

acknowledge receiving the token when no token transfer or acknowledgment
messages are to be sent.

Initially, the number of control messages is calculated without considering the
effect of resiliency. When the token is transferred once for each message acknowl-
edged, the number of confirmation messages required per broadcast message is
P~, where P~ is the probability that the queue of messages waiting to be
acknowledged is empty. Therefore, the average number of control messages
transmitted per broadcast message is 1 + P~. At most, two control messages per
broadcast message are required. When a token is accepted, a site must have all
of the previously acknowledged messages. Therefore, when a message is acknowl-
edged and the token has passed around all sites in the token list, all sites in the
token list must have received the message. If there are N sites in the token list,
the token site only needs to retain the last N - 1 broadcast messages and
acknowledgments in order to answer retransmission requests. Since every site
becomes the token site, this storage is required at every site.

The number of confirmation messages transmitted can be reduced by transfer-
ring the token after acknowledging Kw messages. This, however, increases the
storage requirement by a factor of Kw. As Kw increases to 0% the average number
of confirmation messages per broadcast message decreases to zero. The average
number of control messages decreases to 1, and the storage required increases to
00. This becomes a system in which a single site is responsible for acknowledging
all of the messages.

The storage requirement can be reduced by transferring the token Kr times for
each message acknowledged, but this increases the number of control messages
transmitted. When the token must be transferred Kr times before the next
broadcast message can be acknowledged, the number of control messages per
broadcast message is P~ + Kr. However, the number of messages that must be
stored for possible retransmission is (N - 1)/K~ rounded up to the next largest
integer. Since the retransmission buffer cannot be reduced below 1, there is no
reason to make Kr greater than N - 1. As Kr increases to N - 1, the maximum
number of 'control messages per broadcast message increases to N, and the
retransmission buffer decreases to 1 message. K~ = N - 1 corresponds to a system
in which every receiver must acknowledge the broadcast message. It has the same
number of control messages as a positive acknowledgment system, which requires
individual acknowledgments; however, all receivers are guaranteed to have the
same message sequence.

The token transfer rate describes a family of protocols. A trade-off exists
between the number of control messages transmitted per broadcast message and
the storage requirements as summarized in Table I. As the number of control
messages per broadcast message increases from 1 to N, the storage for retrans-
mitting messages decreases from oo to 1. The system in which a single receiver
acknowledges all of the messages, and assigns timestamps to the messages, lies
at one extreme of this family, and a system in which every receiver must
acknowledge every message lies at the other extreme. In general, a single token
transfer per broadcast message provides a satisfactory compromise between the
number of control messages transmitted and the storage required. When Kw =
K~ = 1, 1 to 2 control messages are transmitted depending on the system

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

266 J. M. Chang and N. F. Maxemchuk

Table I. Trade-of f between N u m b e r of Control Messages and Storage

Rate of token t ransfer N u m b e r of control messages Storage

I per acknowledgment 1 + Pq, m a x 2 N - 1
1 per Kw acknowledgment 1 + Pq --0 1, as Kw .---* o o K w * (N - 1) --0 ¢¢, as K~ --* oo

Kr per acknowledgment P~ + Kr --, N, as K r ~ N - 1 (N - 1) / K r ~ 1, as K r .--. N - 1

utilization. When the system is highly utilized, the number of control messages
per broadcast message is 1, because no confirmation messages are transmitted.

The number of control messages transmitted is also affected by the resiliency
of the system. A token passing message is transmitted after time T if no new
broadcast messages arrive and the last acknowledged message has not been
committed. This approach has the desirable characteristic that the number of
messages transmitted is low during high utilization intervals and higher during
low utilization intervals. During a high utilization interval, when there are almost
always broadcast messages waiting to be acknowledged, no token passing message
is transmitted. During low utilization periods, when there are almost never
additional broadcast messages waiting to be acknowledged, there are at most
L - 1 token passing messages per broadcast message.

The maximum time delay between acknowledging and committing a message
is T (L - 1). The shorter T becomes, the less likely a broadcast message will be
waiting to be acknowledged and the greater the number of control messages.
Therefore, in an L-resiliency system, there is a tradeoff between the commit
delay and the number of control messages. This trade-off is examined by Max-
emchuk and Chang [5].

In summary, depending upon the utilization, the protocol adaptively switches
between 1 and L + 1 control messages per broadcast message. The resiliency
requirement only increases the number of messages transmitted when the system
is not busy. This shows the general characteristics of this broadcast protocol.
There are fewer messages transmitted per broadcast message when the system is
busy than when it is idle. This is verified by simulation results in Section 6.2.

6.2 Simulation Results
The protocol has been implemented and is running on an operational Ethernet
connecting over 20 VAXs and SUNs and on a simulated broadcast network
implemented on a single machine. The simulator uses the same code for the
protocol as the real network. However, the error rate of the network can be
controlled, the sequence of events leading to a failure can be reproduced, and
execution can be stopped to investigate the state of all of the sites in a broadcast
group. This has made it easier to debug the protocol and to make measurements
under different error rates.

In the appendix, an approximate analytical model of the broadcast protocol
and a positive acknowledgment protocol are developed. The positive acknowledg-
ment protocol guarantees that every site in the broadcast group receives every
message, but cannot guarantee that the broadcast messages can be placed in the
same order at every site, as the example in Section 3 indicated. The average
number of messages transmitted using both protocols is calculated. This number
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 267

is also determined using the simulator. The closeness of the analytical calculation
and the simulation result strongly indicates that the protocol is performing as
expected.

In Fig. 6, the average number of messages per broadcast message are plotted
as a function of the probability of error for both the positive acknowledgment
protocol and the reliable broadcast protocol. The lines correspond to the values
predicted by the model, and the X's correspond to measurements taken on the
simulator. Each simulation point was obtained by transmitting at least 1000
broadcast messages. In the simulation experiments reported here, over 50,000
messages were broadcast and received in the same order at every site in the
broadcast group using the reliable broadcast protocol.

In Fig. 6a, b, and c, the broadcast group consists of 3, 10, and 30 sites,
respectively, and the broadcast protocol has a resiliency of 1. The broadcast
protocol is evaluated when the ratio of the token transfer period to the average
message interarrival period r is 0.1, 1, and 10. When r is 10, the system is
extremely busy, and there is almost always a broadcast message to be acknowl-
edged. When r is 0.1, the system is idle most of the time, and many confirmation
messages must be transmitted. Fig. 6d shows the effect of resiliency on a system
with 10 sites. Resiliencies of 1, 2, and 4 are considered. (Since the reformation
cannot succeed unless a majority of sites can communicate, it does not make any
sense to consider resiliencies greater than 4).

Fig. 6 shows that the reliable broadcast protocol, in general, transmits fewer
messages than the positive acknowledgment protocol. Furthermore, in the reliable
broadcast protocol, the number of messages transmitted per broadcast message
decreases when the system is busy, increases when the error rate increases, and
improves over the positive acknowledgment protocol as the number of sites in
the broadcast group increases. Note that when there are only three sites in the
broadcast group, only two sites must transmit acknowledgments in the positive
acknowledgment protocol as opposed to one site transmitting an acknowledgment
in the reliable broadcast protocol. Depending on the system load, the resiliency
does not .necessarily increase the average number of messages transmitted. Fig.
6(d) shows that when the system is busy, r -- 10, the number of messages is
independent of the resiliency. This is not surprising because there is almost
always a broadcast message to be acknowledged, and very few token passing
messages are generated. However, when the system is idle most of the time, r =
0.1, many token passing messages are required, and the average number of
messages per broadcast message increases as the resiliency increases. Note that
when error rate approaches 0, the average number of messages transmitted per
broadcast message matches our prediction in Section 6.1. The total number of
messages transmitted is approximately L + 2 when r -- 0.1, and 2 when r = 10.
(The total number of messages transmitted includes the broadcast message;
hence the number of control messages estimated in Section 6.1 is one less.)

7. C O N C L U S I O N

A family of reliable broadcast protocols have been designed. The tradeoffs
between the number of control messages per broadcast message, the internal
storage required, and the resiliency of the system have been studied. The protocols

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

~E
U

o')
0 a.

I I I I I I I
O0 0 0 0 0 0 0 q

0
I I I I

1 i
q o

ii

~0

~)

o

7

"" o o d

S39VSS31~I _-I0 ~I381AIF1N 39V~I3AV

) (

ii

I I I I
0 co ~ ,~. 0 co ~o ~. oJ

~d N o.i N o.i

S39VSS3Pl _-I0 ~381AInN 39V~I3AV

o
00
q
0

0

0

d " '
LL
0

....2

o o

0 9) -
bJ~-)
v - Z

O -J
~OO

W

\ ~ ~'~, \ . \ \ \ ",X,,',,.
\ \ \ ' ~ , " ,, \ \ \ ;',% , , . , .

I \ \ ~, ~ > s " \ - "

\ I!
~ ~-, . ,,

I I I I I I I~, I . L J I . L . ~ . . t 1

S 3 9 V S S 3 ~ _40 N381NnN 3 9 V ~ I 3 A V

I
0

c..)

0q
0

I I I I I I I I
0 ~ o ~ ~" ~ 0 ~ ~ ~ ~
o J - -
S 3 0 V S S 3 1 ~ .=10 ~381~17N 3 0 V ~ 3 A V

0

d

~ 0

0

Q
0

d

8 d

O J O

0

b.
0

.-I

o

,.=,
1.6
0
:>- ...,

-- I

~o .

~ , . c I

~, ,.1= r./~

¢)
e~ o~ .4

°~

,.o e ~ . ,

"<11

270 • J.M. Chang and N. F. Maxemchuk

have been implemented both on an operational ethernet and on a simulator. The
simulation results closely match the prediction of an analytical model.

The protocols allow N receivers to reliably receive broadcast messages when
less than N acknowledgments are sent, place the messages in the same sequence,
and detect site failures within N token transfers. The proposed protocols thus
provide a synchronized reliable broadcast communication environment with a
failure detection facility. This environment can simplify the design of higher
level distributed algorithms. The protocols have been used as the underlying
communication mechanism for a distributed database system LAMBDA [3]
which has been designed and is currently being implemented to provide a
distributed database service on a local area network. The design of this system
has been simplified by the reliable broadcasting of messages, the message se-
quencing, and the failure detection provided by these protocols.

APPENDIX. AN ANALYTICAL MODEL

In this appendix, an approximate analytical model of the broadcast protocol and
a simple acknowledgment protocol are developed. This model is a refinement of
an earlier model [5]. In the earlier approximation, many of the message require-
ments were calculated assuming that the token was not moving until responses
were obtained. The earlier model is therefore referred to as the static model. The
modified model assumes that the token is always being transferred and is referred
to as the dynamic model.

In both the dynamic and static models, broadcast messages arrive with a
Poisson process. The average number of token transfers and confirmation mes-
sages is calculated assuming that broadcast messages can be acknowledged as
soon as they arrive. This results in an average number of acknowledgments and
token transfers per broadcast message,

1 - e - L ~
Y a ~ " - -

1 -- e - "

and an average number of confirmation messages,

Y c "~- e -LT

where L is the resiliency of the system and T is the ratio of the period between
token transfers to the average interarrival time of messages. These quantities are
derived in [5]. In the simulations there are a finite number of sources which
transmit a broadcast message until it is acknowledged. Therefore, the Poisson
arrival process is distorted. In addition, a broadcast message is not acknowledged
immediately if the site with the token does not receive the message, or if the
token is being transferred and the next site misses the token transfer message or
must recover missing messages. This occasionally results in a queue of waiting
broadcast messages and a reduction in the number of times the token is trans-
ferred between acknowledgments.

In the static model it is assumed that a broadcast message is rebroadcast until
an acknowledgment is received from one particular token site and that only sites
which miss all of these transmissions must request a retransmission. However,
when the system is busy, the token is transferred. If a site misses a broadcast
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 271

message and transfers the token, the next site may have received the message.
In the implementation of the protocol, broadcast messages are not retransmitted
while token transfers are received and a site never loses the messages it transmits.
This results in very few broadcast messages being retransmitted. In the dynamic
model, it is assumed that a broadcast message is only transmitted once (nb = 1).
The number of broadcast messages decreases, but the average number of sites
which have missed the message increases. The average number of sites which
must request the missing broadcast message is

where Pe is the probability that a message is lost, and 1 I N is the probability that
a site acknowledges its own message. This approximation agrees more closely
with the results of the simulations than does the static model.

In the static model,, an acknowledgment is rebroadcast until a response is
received from the next token site, and the previous token site receives the
a c k n o w l e d g m e n t . Only sites which miss all of the retransmissions of the acknowl-
edgment must request this message. In the implemented protocol, sites process
acknowledgements in the order in which they are received. Therefore, if a site
misses an acknowledgment, receives an acknowledgment with a higher time-
stamp, then receives a rebroadcast of the missing acknowledgment, it still
requests the missing acknowledgment. This is reflected in the dynamic model,
where it is assumed that any site which does not receive the acknowledgment
when the next token site receives it will receive a higher order acknowledgment
and will have to request this acknowledgment. The probability that the next
token site receives the acknowledgment on the j t h attempt is (1 - Pe)P~ -1. The
average number of times the acknowledgment is transmitted before the next site
receives it is

na = 1/(1 - Pc)

and the ~verage number of sites which miss the acknowledgment is
o o

nra (N 2) ~,, (1 J-' j ---- -- -- P c) P c Pe
j=l

P c (1 -- Pc)
= (N - 2)

1 - P~

A confirmation message is transmitted until the previous site receives it.
Thus the average number of times a confirmation message is transmitted is
nc = 1/(1 - P~).

Retransmission requests are handled on a point-to-point transmission basis.
When several sites have missed a message, more messages are required than if
the retransmitted message were broadcast to all of the sites. However, in a local
area network, messages not destined to a particular site are eliminated by the
network interface. By using point-to-point transmissions for retransmitted mes-
sages, sites which have not missed a message do not have to process the

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

272 • J.M. Chang and N. F. Maxemchuk

re t ransmit ted message. The protocol was implemented this way because in a
local area network, the processing power of sites on the network is a more
valuable resource than t ransmission capacity. A retransmission request is t rans-
mit ted until a response is received. The average number of t imes a retransmission
request is t ransmi t ted is nr,~ = 1/(1 - p~)2. The re t ransmit ted message is
t ransmi t ted until it is received by the requesting site. Therefore , the average
number of t imes tha t a lost message is re t ransmi t ted is nr,, = 1/(1 - Pe) . The
average number of messages t ransmi t ted each t ime a message is missed is

2 - P ~
n,. = n~q + n~ (1 - pe)2.

The average number of messages t ransmi t ted for each broadcast message is

X p = nb + nrbnr + (na + nran,) Ya + ncYc .

When Pe --* 0, the number of messages t ransmi t ted

1 - e -(L+l)7
---~ 1 + 1 -- e-"

If, in addition, broadcast messages s tar t arriving quickly with respect to the
token t ransfer period, ¢ ~ oo and Xp --* 2. If, however, messages arrive infre-
quently, r --~ 0 and Xp --* 2 + L. This shows the general characterist ics of this
broadcast protocol. When the system is operat ing properly, and very few messages
are lost, there are very few messages t ransmi t ted per broadcast message. There
are fewer messages per broadcast message t ransmi t ted when the system is busy
than when it is idle.

The performance of the broadcast protocol is compared with a positive ac-
knowledgment protocol. The positive acknowledgment protocol requires an ac-
knowledgment from each of the receivers. It guarantees tha t every receiver
obtains every broadcast message, but does not guarantee tha t the messages are
obtained in the same sequence at every receiver. In an error-free environment , a
positive acknowledgment system requires a broadcast message and N - 1 ac-
knowledgments. Unlike the broadcast protocol, this number of messages is
required no mat te r how busy the system is. How the number of messages increases
when messages are lost depends upon the retransmission strategy. In this com-
parison, it is assumed tha t missed messages are handled on a point - to-point
basis, as in the broadcast protocol.

The broadcast message is t ransmi t ted once. The average number of sites which
receive the message and t ransmi t an acknowledgment is no1 = (N - 1)(1 - Pe).
Sites enter the point - to-point retransmission mode if they miss the broadcast
message, or if the broadcast source misses their response. The average number
of sites which enter this mode is nrq = (N - 1)(1 - (1 - Pe)2). Once in this mode,
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

Reliable Broadcast Protocols • 273

a site requires an average of nr messages, as in the broadcas t protocol. Therefore ,
the average number of messages per broadcas t message is

Xb = 1 + n.1 + nrqn~

I + P e - P ~
--- 1 + (N - 1)

(1 - p .)2

REFERENCES
1. CHANG, J.M., AND MAXEMCHUK, N.F. Reliable broadcast protocols. Tech. Rept. AT&T Bell

Laboratories, Murray Hill, N.J., Jan. 1983.
2. CHANG, J.M., AND MAXEMCHUK, N.F. A broadcast protocol for broadcast networks. In Pro-

ceedings of GLOBCOM (Dec. 1983).
3. CHANG, J.M. Simplifying distributed database systems design by using a broadcast network. In

Proceedings ofACM SIGMOD (Boston, Mass., June 1984). ACM, New York, pp. 223-233.
4. KONG, I. Cablenet: A local area network. In Proceedings of the International Computer Confer-

ence (June 1982), pp. 6C.2.1-6C.2.5.
5. MAXEMCHUK, N.F., AND CHANG, J.M. Analysis of the messages transmitted in a broadcast

protocol. In Proceedings of the International Computer Conference (Amsterdam, May 1984). pp.
1263-1267.

6. METCALF, R.M., AND BOGGS, D.R. Ethernet: Distributed packet switching for local computer
networks. Commun. ACM 19, 7 (July 1976), 395-404.

7. PENNEY, B.K., AND BAGHDADI, A.A. Survey of computer communications loop networks: Part
I and Part II. Comput. Cornmun. 2, 4 (Aug. 79), 165-241.

8. TANNENBAUM, A.S. Computer Networks. Prentice-Hall, Englewood Cliffs, N.J., 1981.
9. TOBAGI, F.A. Multiaccess protocols in packet communication systems. IEEE Trans. Commun.

COM-28 (April 1980), 468-489.

Received March 1983; revised April 1984; accepted April 1984

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

