
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/2954521

Why	software	jewels	are	rare

Article		in		Computer	·	March	1996

DOI:	10.1109/2.485847	·	Source:	IEEE	Xplore

CITATIONS

26

READS

86

1	author:

David	Parnas

Middle	Road	Software

301	PUBLICATIONS			16,445	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	David	Parnas

Retrieved	on:	04	September	2016

https://www.researchgate.net/publication/2954521_Why_software_jewels_are_rare?enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE%3D&el=1_x_2
https://www.researchgate.net/publication/2954521_Why_software_jewels_are_rare?enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE%3D&el=1_x_1
https://www.researchgate.net/profile/David_Parnas?enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE%3D&el=1_x_4
https://www.researchgate.net/profile/David_Parnas?enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE%3D&el=1_x_5
https://www.researchgate.net/profile/David_Parnas?enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE%3D&el=1_x_7

Why Software Jewels

David Lorge Parnas
McMaster University

I
Can “lean” software compete

in the marketplace? Can useful

software also be elegant?

Maybe we can’t have it all, but

surely there’s room for

improvement.

0018-9162/96/$5 00 0 1996 IEEE

or much of my life, I have been a software voyeur, peeking furtively
at other people’s dirty code. Occasionally, I find a realjewel, a well- F structured program written in a consistent style, free of kludges,

developed so that each component is simple and organized, and designed
so that the product is easy to change. Why, since we have been studying
software construction for more than 30 years, don’t we find more such
jewels? How often is it possible to produce such a jewel of a system?
Seldom? Frequently? Always?

The author(s) of elegant systems sometimes write articles to tell us how
theywrote that software and to suggest that the rest of us should do what
they did. The literature contains many excellent examples1 Such arti-
cles include a lot of good ideas. For me, the T.H.E. system3 (named for the
Technicsche Hogeschool Eindhoven, where the system was built) has
served as a source of new ideas and insight for 25 years. And Niklaus
Wirth’s recent publications1a2 should be read by every software designer.

Nevertheless, in spite of such helpful articles and many textbooks on
software design, software jewels remain rare. Most of the software we see
or buy is ugly, unreliable, hard to change, and certainly not something
that Wirth or Dijkstra would admire. Ifpublished papers contain the secret
of success for software, shouldn’t we see more jewels?

Although the systems we admire contain useful ideas, these jewels are
often produced under conditions that are rare in industry: In particular,
their designers are free of the constraints limiting those who must sell
their products. In the following sections, I will discuss why the recipes of
the masters haven’t led to more elegant commercial software and then
close with some advice for those who would like to produce better soft-
ware.

WE WANT SOFTWARE TOOLS MORE THAN
SOFTWARE JEWELS

Often, software has grown large and its structure has degraded because
designers have repeatedly modified it to integrate new systems or add
new features. Everyone, even those who don’t want all the added features,
must then deal with the complexity resulting from repeated modifica-
tions. Software that is repeatedly changed to add the unanticipated fea-
tures needed to keep pace with the market exhibits a definite “aging” effect
and becomes ugly.4 Wirth suggests that we keep our software lean by stick-
ing to essentials, omitting “bells and whistles.”l Besides, lean software is
likely to be smaller and even faster.

It is difficult to argue with this precept, until we try stating the criteria
for distinguishing between essentials and luxuries. Wirth mentions icons
and overlapping windows as examples of frills. Icons may appear to be an
unnecessary gimmick for some of us, but for others they are an important

February 1996

001 in a life filled with interruptions that force us to switch
asks frequently. Overlapping windows may seem unim-
,ortant to Oberon designers, but I find them very useful.
roberon, a workstation system developed by Wirth and
:olleagues, is used as an illustration in References 1 and 2.)
3ffered a jewel or a more useful tool, most customers
:hoose utility. To sell products, you have to add the fea-
ures the market demands. Not everyone has the luxury
if working for a not-for-profit institution.

However, it isn’t always necessary to choose between
‘unction and elegance. Perhaps I’m too optimistic, but I
jon’t think a designer must omit features to build what
Nirth calls “lean software.” What is necessary is to design
he product so that newly added features

do not eliminate useful capabilities,
make good use of capabilities already present for

* can be ignored or deleted by people who don’t want
other purposes, and

them.

The jewels exhibit many of these princi-
ples, which, along with others, are
described explicitly in the l i t e r a t ~ r e . ~
Giving up certain features to avoid “fat soft-
ware” is analogous to cutting off a foot
because one is overweight: It’s neither
necessary nor advisable. Given a choice
between tool and jewel, we will choose
tool; but with a little more thought, we can
often have both. Studying the jewels can
show us how.

WE WANT COlVlPATlBlLlTY
Software can grow large for many reasons. In “A Plea

for Lean Software,”2 Wirth concentrates on one reason:
bad design. A quite different cause of overweight software
is the inclusion of features and interfaces necessary to
make a new product compatible with earlier ones. When
designing a product intended for a large market, software
engineers must remember that potential customers will
have existing software they want to continue using and
existing files they must still be able to process. They will
also want the capability to communicate easilywith other
systems, import documents produced by other systems,
operate a wide variety of existing peripheral devices, and
so forth. Few users are willing to abandon old files, pro-
grams, documents-or even old habits-when switching
to a new system. In the real world, designers must add
capabilities to their systems that theywould not add if they
were designing in a vacuum. Adesigner who doesn’t have
to worry about sales can pursue a design that allows only
one way to perform key functions. Those wishing to enter
a very competitive market may find that such elegance will
doom their product.

After reading “Gedanken zur Software-Explosion,”l I
sent an e-mail message to Wirth asking if he had an English
version my students could read. He replied, “I can either
send you the original in English on paper (edited in read-
able form), or I can e-mail it as an ASCII text. Let me know
what you prefer.” In this decade, most of us use computer
networks that let us exchange papers in better ways. I can

send a LaTex, nroff, or PostScript version of a paper almost
anywhere and the recipient will be able to print it. Who
would want to use a system that would not allow us to send
or receive papers that were prepared using “standard”
tools such as these? Providing these capabilities requires
either reimplementing the processors for those notations
or providing the standard interfaces needed by existing
processors. Some may view this as “fat,” but others will
recognize it as “muscle.”

Systems that offer compatibility with other products
and earlier systems will never be jewels, but they will be
useful.

GOALS VERSUS LIMITATIONS
Performance goals and hardware limitations often

interfere with structure. I once belonged to a team that
tried to produce a software jewel under tight memory and
processor constraints. With the support of the US Navy,
our small team tried to redesign the onboard flight soft-
ware for the A-7E aircraft. We had two constraints: We
could not change the hardware, and we could not change
the user interface.

Our effort resulted in the publication of many useful
design ideas (for example, techniques for describing
requirements* and for designing interfaces7 and software
architecture9). Nevertheless, we failed to reach our goal
of producing a running jewel. Inspired by Dijkstra3 and
armed with ideas later published in the literature,610 we
thought it would be easy to produce something that per-
formed as well as the unstructured and poorly docu-
mented product already in use. We failed because we
could not overcome the hardware constraints. For exam-
ple, the computer had been designed especially for mili-
tary applications and had a register structure that I found
bizarre. Near-optimal register allocation was essential
to fitting the program into a very small memory. One of
our design goals (inspired by Dijkstra) had been to
achieve hardware independence for most of our code.
To achieve hardware independence on the specified
processor, we needed an effective register allocation algo-
rithm. The previous software for this task had been suc-
cessful because none of the code was portable and register
allocation was done by hand. We never found the neces-
saryregister allocation algorithm. The T.H.E. system3 had
been designed as if performance didn’t matter and, conse-
quently, its performance didn’t satisfy many of its intended
users. Commercial success was not one of the goals.

Although today‘s machines are far better than the one
we were using, goals have expanded and competitive pres-
sures often limit the resources available Few of today’s
designers are free to ignore performance requirements
and hardware limitations. In our attempt to apply
Dijkstra’s ideas, we discovered that some of them could be
refined to reduce performance problems. Several exam-
ples in the literature6J11 refine the concept of hierarchy.
Unfortunately, applying the more refined ideas requires a
lot of time for analysis and backtracking, another luxury
not usually available in today’s deadline-driven market.

STANDING ON EACH OTHERS
SHOULDERS

The masters have had a chance to learn from others.

Computer

The fat and ugly software we use today wasn’t written
from scratch; it evolved. Software was written, tested,
offered to users, and then changed in response to their
requests. Programs were modified to offer new (and more
general, convenient, or intuitive) features. If the designers
of fat software were allowed to start over, designing what
they would have designed if they had known what was
coming, their products would look very different. Given
the opportunity to discard all the old ways of doing things
and to just do it right the first time, they would probably
produce lean and efficient software. Indeed, we’d all do
better ifwe could start with all the knowledge we will have
later when a product is mature. Unfortunately, commercial
designers don’t have that chance very often.

Designers of software jewels often had the advantage
of being able to learn from others’ mistakes. For example,
the designers of Oberon gained by watching other teams
design similar systems. Theirs is not the first workstation
offering storage management, a file system, a window dis-
play manager, a networkwith servers, a compiler, and edi-
tors. Wirth and his team, for example, were closely
connected with Xerox PARC. Similarly, the designers of
T.H.E.3 knew about developments on a variety of other
operating systems. Those working on the programs that
control the US telephone system have estimated that they
could replace 25 million lines of code with a program that
is a small fraction of that size if they could start over. When
Wirth asks, rhetorically, how Oberon could be so small, he
doesn’t give the whole answer. The Oberon design team
obviously learned a great deal from the mistakes of oth-
ers, and those others have not had a chance to return the
compliment.

There is a positive lesson in this for those who do have
the opportunity to start a new project. Time spent study-
ing previous efforts and identifying the reasons for their
poor structure is likely to pay off in a far better, easier to
maintain, product.

REINVENTING THE WHEEL
One of the weaknesses of technological society is that

we sometimes place far too much emphasis on original-
ity. Creativity and originality are obviously valuable wher-
ever there is room for improvement, and they are essential
when dealing with problems for which we have no ade-
quate solution.

Nevertheless, we have an unfortunate tendency to value
creativity as an end in itself and use it as an excuse for igno-
rance. I have known both researchers and developers who
refused to look at previous work because they wanted to
use their own ideas. Managers often do not allow their
designers time to study the way things have been done in
the past. It seems obvious that we should use our own
ideas only if they are better than previous ones. Successful
innovators usually know previous work and have man-
aged to understand the fundamental weaknesses in earlier
approaches. Too many software products show evidence
of “ignorant originality.” They make the same mistakes
others made before them and ignore solutions that others
have found.

Wirth appears critical of the purveyors of techniques
that use the buzzword “object-oriented’ for having rein-
vented the ideas behind the older concept of abstract data

type.l.2 However, many would argue that abstract data
type itself was a reinvention (refinement) of ideas that
appeared in even earlier work (for example, References 3,
10, and 12). Through his best known language, Pascal,
Wirth is often given credit for “inventing” ideas that I first
saw in Algol-60 and other early languages. Nobody criti-
cizes Pascal’s inventors for having reused good ideas; it
would have been foolish and irresponsible not to. We must
not forget that the wheel is reinvented so often because it
is a very good idea; I’ve learned to worry more about the
soundness of ideas that were invented only once.

Sometimes the introduction of new words for old ideas
blocks the old literature from view. Newcomers, entranced
by 00 terminology, don’t even read older papers on soft-
ware design in which some of the “new” ideas are nicely
described and illustrated. Everyone who likes 00 ideas
should read “The Structure of the T.H.E. Multipro-
gramming Sy~tem,”~ which describes an object-oriented
design without ever using the word object.

DESIGN VERSUS LANGUAGE
Sometimes new languages are used in

the design of jewels, and authors may
attribute a product’s success to the use of a
particular language or type of language.
Here, I have grave doubts. I have lost count
of the number of languages that have been
introduced to me as the solution to the soft-
ware problems that everyone experiences.
First, I was told to use Fortran instead of an
assembler language. Later, others advo-
cated Algol-60 and its derivatives as the
cure to the ugly software resulting from
Fortran. Of course, NPL, later known as PLA, was going
to provide an even better solution. The list goes on. Wirth
promotes Oberon2 while hundreds of people are telling
me that an object-oriented language must be used to get
clean software. I no longer believe any such claims. The
issue is design, not programming language.

Wirth is best known for his work as a designer of lan-
guages, so it is not surprising that he views the problems
of software design as a question of 1anguage.lJ Computer
science’s greatest contributions have been in the area of
language design, and designing a new language is a reflex
for many trained in that discipline. However, my experi-
ence does not support the view that the programming lan-
guage used determines the quality of the software. I have
seen beautiful, lean software written using only an assem-
bler (Dijkstra offers an example3), good software written
in Fortran, and even good software written in C. I have
also seen programs in which each of these tools was used
badly.

In an ideal world, today’s most popular languages would
not be my first choice as program construction tools, and
I think Wirth’s criticisms of C are quite valid. However,
product designers can rarely choose what language to use.
They are required to interface with legacy code and use a
language known by many programmers. The option of
designing a new language for each new project is rare in
a commercial environment. Focusing on the programming
language is a red herring that will distract us from real
solutions to the problem of poor software.

February 1996

The jewels I’ve found owe their elegance to

the use of good decomposition principles, as dis-

0 the use of good hierarchical structures, as discussed

the design of interfaces, as discussed in References 5

cussed in Reference 12;

in References 3,5,6, and 11; and

and 7.

The design principles presented in these papers can be
spplied in any language.

We should not ignore the fact that most modern lan-
guages have inherent disadvantages. A language that sup-
ports a certain approach to software design often compels
us to use a particular implementation of a design principle,
one that may be inappropriate for the task at hand. For
example, many languages that support modules, abstract
data types, and object classes require the use of subrou-
tines where macro expansion might be a better choice.
Moreover, languages that prevent programming errors, a
goal advanced by some inveterate language designers, are
as feasible as knives that can cut meat but not hands. We
need sharp tools to do good work.

THERE IS MUCH TO LEARN FROM JEWEL-LIKE! SYSTEMS. w e can
and m u s t learn to write lean software and systems like
Oberon and TH.E., systems that provide important

lessons. We can apply those lessons even if
we write in C or assembler, and we can use
the good design principles to write better
software even if commercial constraints
mean that the product can’t be as small and
elegant as the jewels we would all like to
manufacture. The most important lesson
is “up-front investment.” In each of the jew-
els I’ve seen, the designers had obviously
spent a lot of time thinking about the struc-
ture of their system before writing code.
The system structure could be accurately
described and documented without refer-
ence to the code. Programs were not just
written; they had been planned, often in
some pseudocode or alanguage other than

the actual programming language. In contrast, the worst
software I’ve seen was written in “stream of execution
order” without a design having been produced (and
reviewed) in advance.

My engineering teachers laid down some basic rules:

1. Design before implementing.
2. Document your design.
3. Review and analyze the documented design.
4. Review implementation for consistency with the

design.

These rules apply to software at least as much as they do
to circuits or machines. I

References
1. N. Wirth, “Gedanken zur Software-Explosion,” Informatik

Spektrum, Band 17, Heft 1, Feb. 1994.
2. N. Wirth, “APlea for Lean Software,” Computer, Vol. 28, No.

2, Feb. 1995, pp. 64-68.
3. E.W. Dijkstra, “The Structure of the THE Multiprogramming

System,” Comm. ACM, Vol. 11, No. 5, May 1968, pp. 341-346.
4. D.L. Parnas, “Software Aging,”Proc. 16thInt’l Conf. Sofmare

Eng., IEEE C S Press, Los Alamitos, Calif., Order No. 5855,
1994, pp. 279-287.

5. D.L. Parnas and D.P. Siewiorek, “Use of the Concept of Trans-
parency in the Design of Hierarchically Structured Systems,”
Con” ACM, Vol. 18, No. 7, July 1975, pp. 401-408.

6. D.L. Parnas, “Designing Software for Extension and Contrac-
tion,”Proc. Third Int’l Conf: Software Eng., IEEE CS Press, Los
Alamitos, Calif., Order No. 187, 1978, pp. 264-277; also pub-
lished inIEEE Trans. SofmareEng., Mar. 1979, pp. 128-138.

7. K.H. Britton, R.A. Parker, and D.L. Parnas, “A Procedure for
Designing Abstract Interfaces for Device Interface Modules,”
hoc . Fiflhlnt’l Conf. SofmareEng., IEEE CS Press, Los Alami-
tos, Calif., Order No. 332,1981, pp. 195-204.

8. K.L. Heninger, “Specifying Software Requirements for Com-
plex Systems: New Techniques and Their Application,” IEEE
Trans. SoftwareEng., Vol. SE-6, Jan. 1980, pp. 2-13.

9. D.L. Parnas, P.C. Clements, and D.M. Weiss, “The Modular
Structure of Complex Systems,” IEEE Trans. Software Eng. (spe-
cial issue on the Seventh International Conference on Soft-
wareEngmeering),Vol. SE-11, No. 3, Mar. 1985, pp. 259-266.

10. D.L. Parnas, “Information Distribution Aspects of Design
Methodology,” Proc. IFIP Congress 1971, North-Holland,

11. D.L. Parnas, “On a ‘Buzzword‘: Hierarchical Structure,”Proc.
IFIP Congress 74, North-Holland, 1974.

12. D.L. Pamas, “On the Criteria To Be Used En Decomposing Sys-
tems into Modules,” Comm. ACM, Vol. 15, No. 12, Dec. 1972,

”

1972, pp. 26-30.

pp. 1,053-1,058.

David Lorge Parnas holds the NSERC/Bell Industrial
Research Chair in Software Engineering in the Department
of Electrical and Computer Engineering a t McMaster Uni-
versity in Hamilton, Ontario. I n addition to the usual acad-
emicpositions, Parnas has worked as a consultantfor Philips,
the US Navy, IBM, and the Atomic Energy Control Board of
Canada. The author of more than 180papers and reports,
he is interested in most aspects of computer system design
and seeks to f i nd a “middle road”between theory andprac-
tice. He received a PhD i n electrical engineering f r o m
Carnegie Mellon and a n honorary doctorate f r o m the ETH
in Zurich. The winner of theACMBestPaperAward in 1979,
as well as two MostInfluentialPaperAwardsfrom the Inter-
national Conference o n Software Engineering, he was also
the first winner of the Norbert Wiener Awardfor Professivnal
and Social Responsibility (awarded b y Computing Profes-
sionals f o r Social Responsibility). Parnas is a fellow of the
Royal Socieyof Canada and of theACM, and asenior mem-
ber of the IEEE.

Parnas can be contacted a t the Department ofElectrica1 and
Computer Engineering, McMaster Universiv, Hamilton,
Ontario, Canada, L8S 4Kl.

Ted Lewis, formerly Computer’s Cybersquare area editor,
coordinated the review of this article and recommended i t
forpublication. His e-mail address is lewis@cs.nps. navy.mil.

Computer

http://navy.mil
https://www.researchgate.net/publication/234792502_Use_of_the_concept_of_transparency_in_the_design_of_hierarchically_structured_systems?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/234792502_Use_of_the_concept_of_transparency_in_the_design_of_hierarchically_structured_systems?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/234792502_Use_of_the_concept_of_transparency_in_the_design_of_hierarchically_structured_systems?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/234783397_On_a_buzzword_hierarchical_structure?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/234783397_On_a_buzzword_hierarchical_structure?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/3189208_Designing_Software_for_Ease_of_Extension_and_Contraction?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/3189208_Designing_Software_for_Ease_of_Extension_and_Contraction?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/3189208_Designing_Software_for_Ease_of_Extension_and_Contraction?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/3189208_Designing_Software_for_Ease_of_Extension_and_Contraction?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/3189292_Specifying_Software_Requirements_for_Complex_Systems_New_Techniques_and_Their_Application?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/3189292_Specifying_Software_Requirements_for_Complex_Systems_New_Techniques_and_Their_Application?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/3189292_Specifying_Software_Requirements_for_Complex_Systems_New_Techniques_and_Their_Application?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/260648994_The_Modular_Structure_of_Complex_Systems?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/260648994_The_Modular_Structure_of_Complex_Systems?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/260648994_The_Modular_Structure_of_Complex_Systems?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/260648994_The_Modular_Structure_of_Complex_Systems?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/260713513_The_Structure_of_the_THE_Multiprogramming_System?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/260713513_The_Structure_of_the_THE_Multiprogramming_System?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/2954362_Plea_for_lean_software?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/2954362_Plea_for_lean_software?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/220352464_Gedanken_zur_Software-Exlosion?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/220352464_Gedanken_zur_Software-Exlosion?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/221553406_A_procedure_for_designing_abstract_interfaces_for_device_interface_modules?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/221553406_A_procedure_for_designing_abstract_interfaces_for_device_interface_modules?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/221553406_A_procedure_for_designing_abstract_interfaces_for_device_interface_modules?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/221553406_A_procedure_for_designing_abstract_interfaces_for_device_interface_modules?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/221331713_Information_Distribution_Aspects_of_Design_Methodology?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=
https://www.researchgate.net/publication/221331713_Information_Distribution_Aspects_of_Design_Methodology?el=1_x_8&enrichId=rgreq-1bb98d36c728c3fd280293f184c55f16-XXX&enrichSource=Y292ZXJQYWdlOzI5NTQ1MjE7QVM6MjQ2ODEwMDA2NTE5ODA4QDE0MzU4NTU0OTkwNDE=

