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Abstract

This paper is a short tour of the synchronization methods for real-time with special attention
to the RTCore (RTLinux) real-time operating system. A glossary is provided for some tutorial
material.

1 Real-time software is like an automobile factory

Synchronization operations impose temporal order on a software system by forcing some computations
to wait until other computations complete. Waiting and negotiating over which computation should
take place next can easily absorb significant fractions of processing power and can cause significant
delays. To compensate, engineers can specify more powerful processors and more resources, maybe
even multiple processors — but such things are not free. Even worse, synchronization can easily
produce timing failures or deadlocks that may elude testing and this becomes more of a hazard as more
complex and sophisticated synchronization operations are employed. It’s not uncommon for control
system software to spiral in complexity as more hardware is added to provide the compute power
needed for synchronization, necessitating more synchronization which requires more resources and
also more sophisticated special case software to compensate for hard to find sporadic timing problems
and so on.

This note is a tutorial on synchronization of real-time software, focused on applications running
under the RTCore operating system (RTLinux is RTCore plus Linux). Throughout the design and
ongoing development of RTCore, we have tried to solve problems by simplification instead of by adding
features. One of the most brilliant practitioners of this approach to engineering is Taishi Ohno, who
helped develop Toyota’s manufacturing process. Ohno noticed that large parts inventories in production
plants were a significant cost and that they masked inefficiencies. When inventory was reduced and the
factory was designed to run,just-in-timeproblems in quality and reliability were exposed and fixed. The
result was greatly increased productivity. Using up parts inventory and using up slack time ”inventory”
during synchronization are analogous. If a task is scheduled to start at timet and only starts at timet+w

because of delays waiting and negotiating for resources, we have to relax deadlines and build slack time
into the system to compensate forw. The slack time is temporal inventory — time we stockpile in order
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to compensate for resource conflicts, the overhead of arbitration, and other scheduling inefficiencies.
We cannot expect to reduce inventory to zero or to do without any synchronization at all, but we can
produce cleaner and more reliable software by working to minimize synchronization time.

2 Basics

Some of the technical terms here are defined in a glossary section indicated by a reference to such as
[G1] for glossary reference1. I will use the termtaskto indicate a section of executable code plus state.
Tasks include processes, POSIX stylethreads[G12] andinterrupt handlers[G7].

2.1 Goals

Designers of anyconcurrent[G3] software must ensure thatsynchronization[G2] operations are (1)
usually fast (2) take up a small percentage of total computation time, (3) do notdeadlock[G1] and (4)
do not defeat modularity. The last item is perhaps the only surprise on this list, but synchronization
points can be among the most dangerous global data structures — causing scheduling dependencies be-
tween components that are logically unrelated. Designers ofreal-time[G4] software must impose two
additional requirements for synchronization operations; (5) worst-case delays are bounded and small,
and (6) interactions among logically distinct components do not cause unacceptable timing changes. If
the average delay for starting a critical task is within tolerance but the worst-case is out of tolerance,
the system may still fail spectacularly. The often misunderstoodMars Pathfinder[G8] near-disaster
is an example of how a hidden shared synchronization point changed system timing enough to cause a
catastrophic failure. I will go into some depth on pitfalls in section 4.2, but satisfying all six constraints
is usually not too hard as long as sensible design procedures are followed.

2.2 Priorities

Real-time programming is generally based on a priority ranking of tasks and simple rule.

Rule 1 Nothing should delay the highest priority runnable tasks.

Priority makes synchronization more difficult because priority and synchronization can come
into conflict and because too many priority levels can sabotage performance.

2.2.1 Too many levels

When a system spends its time rescheduling differently prioritized computations and doesn’t get
enough work done, this may be a sign that there are too many computations with too many levels
of priority. If you haven computations at different priority levels, the worst case isn preemptions
with no real work done. One question to always ask iswhat is the difference between computations at
different priority levels?Suppose you have 100 priority levels. Can you clearly specify the rationale
for the priority level differences between computations at priority 95,96,... 100?

Scheduling large numbers of prioritized computations is a problem that is incorrectly believed to
be solved by rate monotonic scheduling[?]. RMA provides a formula for deriving priorities from rates,
based on the sensible rule of thumb that the highest frequency tasks are often the most important. There
is a large literature on rate-monotonic scheduling, and it may be useful for your application, but RMA
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assumes a great deal about the application that is not generally true and one is better off simplifying
when determining priority becomes too complex to do by hand.

Rule 2 Do not add priority levels unless you can precisely specify why tasks at one level should pre-
empt tasks at the next lower level. Do not add tasks to avoid thinking about control flow.

2.2.2 Too much pre-emption

The complementary problem is when a critical task does not get to finish its computations because it
is interrupted by higher priority tasks. Here we have to face an unfortunate reality: we are designing
real-time systems without the appropriate mathematical and engineering tools. The current state of
the art provides no way to precisely analyze the worst case timing of anything but the most elemen-
tary computations. Even in the simpler cases, the uncertainties of cache misses, DMA, memory, and
processor pipelines cause great difficulties. Note that RMA depends on a quite precise calculation of
worst case timing for each task — something that is generally not available. Testing and approximate
analysis are the only tools we have. Which brings us to the next rule.

Rule 3 Design so that you can reliably test worst case timing. Keep real-time tasks simple and their
primary control loops simple because if there are too many code paths, tests and analysis will not find
all code paths or identify all delays.
And run tests for long periods under varying worst-case loads. Do not assume you know what is the
worst case load.

2.2.3 Priority Inversion

Priority inversionis the term used to describe violations of rule 1 due to synchronization. If taskA has
exclusive use of resourceR and higher priority taskB becomes runnable,B must wait forA - inverting
priorities. Priority inversion is possible when there is a resource that requires synchronized access and
is shared between tasks with unequal priority. If we think about it, such situations are intractably bad. If
TaskA is more important than taskB, andA can preemptB, then what possible reason can we have for
allowing B to get exclusive use of a resource thatA requires? Priority inheritance and priority ceiling
algorithms are widely, and incorrectly, believed to fix priority inversion problems. I’ll look at these in
more detail in section 4.2.1, but the best solution is to avoid the entire problem.

3 Just-in-time scheduling

The best synchronization is no synchronization. Synchronization permits us to use sloppy schedules
and to delay execution of a scheduled task until the resources are ready.

Rule 4 It is best to schedule just in time. Whenever possible, real-time systems should make sure that
no two real-time tasks are scheduled to run during a common interval and that scheduled real-time
tasks are never blocked waiting for resources.
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3.1 Scheduling just-in-time

For many years, engineers designed real-time software as explicit loops or slot schedulers and these
are still perfectly good designs for many software systems. A classical data acquisition application for
example, may simply poll a set of sensors on a periodic schedule. No synchronization required. A
control system may stagger a data acquisition task and a control output task. If the periods and start
times are correctly chosen, the system runs just-in-time. No synchronization is needed. As an example,
suppose we poll the sensor everyk nanoseconds and generate an output every3k nanoseconds. In
RTLinux we could design this quite simply. We would create two real-time threads. The input task
waits for its time to run, gets data, queues it, and loops. Note the three lines markedDEBUG TEST.
These would be used during test phase to make sure that the two tasks never overlap in execution time.

Example 1 Alternating threads: input

task_input:
clock_gettime(CLOCK_REALTIME,&t0); // read the time
while(!stop)
{

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t0, NULL);
/*DEBUG TEST*/if(sem_trylock(&overlap_sem))fail();}
collect_data_from_a2d_device(data);
queue_data(data);
timespec_add_ns(&t0,INPUT_DELAY_NS);

}

The output task does much the same thing, but it waits for the offset interval before starting to
ensure that the two tasks are out of phase.

Example 2 Alternating threads: output

task_ouput:
clock_gettime(CLOCK_REALTIME,&t1); // read the time
timespec_add_ns(&t1,OFFSET_NS); // compute start time
while(!stop){

clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t1, NULL);
/*DEBUG TEST*/if(sem_trylock(&overlap_sem))fail();}
dequeue_data(data);
compute_output();
output_control();
timespec_add_ns(&t1,OUTPUT_DELAY_NS);
/*DEBUG TEST*/sem_post(&overlap_sem);

}
....

What happens if there is an overlap? This can only happen if the execution times of the threads
are too long for the period. Testing and analysis should eliminate the possibility of such an error during
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development. Making the two threads equal priority ensures that in the case of a failure, there will be
no preemption – as long as theclock nanosleep operation is the only blocking operation of either
thread. For some applications, thefail operation may allow for runtime recovery and in this case the
overlap test may be left in production code.

This same system can be exceptionally efficient on an SMP multi-processor. In RTCore, when
you create threads, you can set the CPU attributes of the two threads so they run on different processors.
The offset is still needed to make sure that there is fresh data to output when the output thread runs.

This section has illustrated an old and time-tested design technique that requires absolutely no
synchronization. No time is wasted negotiating over access to shared objects, there are no false starts,
and no required preemption. For many projects a design like this can reduce processing requirements
— potentially allowing for a lower power lower speed processor.

3.2 Asymmetric just-in-time and non-blocking I/O

One design issue that can cause programmers to abandon just-in-time is the use of low priority non-
real-time tasks for housekeeping and other functions that are either not critical or that can use buffering
to compensate for timing fluctuations. For example, consider a system where a real-time task collects
video frames from a camera and a second task displays the video and stores it in a file. Given a big
enough buffer and a “makes progress during any 1 second interval” assurance from the non-real-time
scheduler, the second task does not need to be made real-time. Real-time applications of this kind con-
sist of a real-time component and a (typically much larger) non-real-time component. RTCore/RTLinux
is is specifically designed to simplify such systems by running an non real-time operating system from
a real-time kernel.

Rule 5 Asymmetric just-in-time: Pre-empting and blocking non-real-time tasks is not a violation of
the just-in-time scheduling rule.

Note that rule 5 is not the same as saying that pre-empting lower priority threads is ok. All
real-time threads have time constraints. Pre-empting non-real-time threads is entirely different from
pre-empting real-time threads.

The standard method to connect the real-time and non-real-time components in RTCore is via
an asymmetric device interface in which the real-time side always sees a non-blocking interface. For
example, consider the following code from an application that logs data from an analog-to-digital
device.

Example 3 Using asymmetric FIFO

clock_gettime(CLOCK_REALTIME,&t);
while(!stop)
{

collect_data_from_a2d_device(&data);
write(fd,&D,sizeof(D)); /* async write to rt-fifo */
timespec_add_ns(&t,DELAY_NS);
clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t, NULL);

}
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If the write cannot advance because buffers are full, data is simply dropped1.
On the other side of thewrite may be something as simple as a UNIX shell script:

cat < /dev/rtfifo0 > logfile

This would be implemented by a UNIX process that had no real-time requirement, could be
preempted at will and made to block when no data is present in the fifo. Theread operations thatcat
does to collect data are synchronous and block when there is no data. Thewrite operations thatcat
does tologfile are also synchronous and block. The real-time task preempts any UNIX process
everyDELAYNSnanoseconds. But none of this violates the just-in-time rule and none of it interferes
with precise timing of real-time tasks becausethecat process is not a real-time task.

3.3 Event driven scheduling

Blocking operations, operations that may cause a task to be suspended until data is available or a lock
is released must be treated with great care in real-time programming. If our task is time constrained,
what is it doing invoking an operation that may suspend it for some indefinite period? Often times
code analysis shows that blocking operations are used because programmers are not thinking carefully
about system design and are reusing non-real-time programming techniques in the wrong place. But
event driven programming is one of the most useful methods in real-time software and it depends on
blocking threads until some event triggers the activation of the thread. Blocking I/O operations and
semaphores[G6]are the traditional tools for this type of programming.

Consider the following code

Example 4 Blocking producer.

Thread A:
do {

read data by a blocking operation
process the data
if space on output queue

enqueue data
else

discard data
} while(not done);

ThreadA uses the blocking operation to drive its schedule. After completing the loop, the task
blocks waiting to run again at when new data shows up. The same design can be implemented us-
ing semaphores. Suppose that an interrupt handler is called when data is produced by a device.

Example 5 Blocking consumer

Thread A:
do {

1Error handling is omitted in this example, just to make the example simpler. In a real system, we dropping data might be
correct or we might want to take some corrective action.
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semaphore decrement. /* the interrupt routine does post*/
do something
yield

} while(not done);

In this case the schedule forA is determined by an interrupt handler that presumably does some
simple processing and leavesA to complete the job. Just as in the first case, the blocking operation
drives the schedule.

Here’s an example where a high frequency thread checks the temperature, does a simple oper-
ation, and wakes up a thread that will do some background processing if the temperature is too high

Example 6 Semaphore powered event driven.

check_temp_thread(){
if(temp > 100) sem_put(&sem_help_me);
timespec_add_ns(&t0,SMALL_PERIOD_NS);
clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t0, NULL);

}

...
help_thread(void){

sem_get(&sem_help_me);
/* sound the alarm */

...
}

As a second example, consider a producer and consumer on an asynchronous non-blocking
queue where we would like the consumer to block if there is no data.

Example 7 Producer/Consumer 2

producer() {
pq_enq(&q,newpacket());
sem_post(&q_sem);

}
// we assume here there is never more than one consumer task
consumer() {

sem_wait(&q); // when we pass here we know deq will succeed.
m = pq_deq(&tx);

}

We might do more sophisticated flow control and error handling by putting low level control into
an interrupt handler and activating an error thread if space gets short.
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3.4 Interrupt handlers

Interrupt handlers or interrupt service routines (ISRs) are functions that are activated asynchronously
by hardware events. Aninterrupt handler[G7] version of example 3 is simpler than the thread.

Example 8 Interrupt handler using FIFO.

rtl_request_irq(A2DDEVICEIRQ,handler);
...
handler()
{

collect_data_from_a2d_device(&data);
write(fd,&D,sizeof(D)); /* async write to rt-fifo */
return;

}

RTCore, following the UNIX tradition, runs interrupt handlers in the context of whatever thread
was executing when the interrupt is caught. The motivation for this approach is to avoid the cost of
switching to a handler thread when that is not necessary.

Rule 6 Interrupt service overhead minimization. The least possible context should be saved and
restored during an interrupt service operation.

When a handler starts in RTCore further interrupts are disabled and the current interrupt is masked.
When the handler is ready, it must unmask the interrupt but the handler should never re-enable interrupts
directly. The RTCore kernel re-enables interrupts when it restores the context of the interrupted thread.

Example 9 Interrupt Handler

rtl_request_irq(A2DDEVICEIRQ,handler);
fd = fd_normal;
..
handler(){
collect_data_from_a2d_device(data);

reenable_the_device(); // but interrupts are still disabled on this cpu
if (write(fd,data,DATA_SIZE) != DATA_SIZE) {

if (!overflow) {
write(fd_error,DATA_SIZE));
overflow = 1;
fd = fd_overflow;
sem_post(&failure_sem);

} // else drop the data
return;

}
}
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The basic idea here should be clear. The second thread is scheduledjust-in-timeby a semaphore
post operation and this is a common and invaluable technique. In many cases where a static just-in-time
schedule is impossible to design, it is possible to schedule real-time threads using semaphores. What
does the thread waiting on the semaphore do when it wakes up? This depends on the data semantics.
Possibilities include turning on an error indicator, some flow control, interpolating data and increasing
the priority of the UNIX process at the other end.

Suppose, that the producer is interrupt driven as above, but the consumer is also a real-time task.
For example, the second task may wait for a counting semaphore and a post operation from the first
task may be the correct way to wake it up. In this case, the schedule adapts to data arrival times and
both criteria of the just-in-time rule are met.

3.4.1 Interrupts and semaphores

It’s worth looking at semaphore wakeups in a little more detail. Rule 1 determines much of the design
of RTCore semaphores. Asem post operation has the following semantics

Example 10 Semaphore semantics:

sem_post(s){
atomically{ increment s

if there are waiters wake the highest priority one
}

if we woke a higher priority thread, on our CPU, switch.
}

A sem post operation will reschedule the system so that if a higher priority thread is released
by a post operation, the time that the higher priority thread waits to run is minimized. This may seem to
be obviously good, but what what happens when an interrupt service routine callssem post? If high
priority threadT ′ is waiting on a semaphore and threadT is the running thread and an interrupt causes
an ISR to run in the context ofT and callsem post then a thread switch will preemptT .

T running ISR sempost ... resumes ISR returns runs
T’ waiting wake runs ... pre-empted

As a result, ISR code must allow for possible long delays between asem post and the comple-
tion of the ISR. It’s generally wrong to have code that re-enables a hardware interrupt after a semaphore
post. This is an example of one of the places where real-time constraints expose system behaviors that
can easily be hidden on non-real-time systems. In the average case, there will not be wakeups of higher
priority threads so it is possible to keep good average latency by simply setting a flag insem post and
calling the scheduler in the low level ISR return code. But average case does not help us. We have to
immediately switch and pay the price of needing some more vigilance in ISR code development. In
cases where this behavior is not wanted, RTCore provides both apthread kill to wake a waiting
thread on a semaphore without an immediate re-schedule and the mutex operations are also specifically
designed not to call the scheduler. Since POSIX semantics for mutexes are kind of complex already,
we decided that an additional small delay inmutex unlock would not be an issue.
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3.5 Lock-free structures

Sometimes it is possible to design data structures so that even though they are shared, there is no need
to synchronize access.

Rule 7 Lock free data structuresWhere there are fast algorithms, use lock-free structures to avoid
synchronization.

In RTCore we have a couple of useful primitives for building lock-free data structures and a high
speed lock-free queue. The POSIXsem getvalue (atomic read)sem trylock (atomic decrement if
greater than 0, fail otherwise) operations which are exceptionally useful for atomic access to counters.
RTCore also offersrtl test and set which is passed a pointer and a bit position, and atomically sets
the indicated bit and returns thepreviousvalue. On the x86 test and set bit uses a special instruction,
on other machines it is more complex and some processors have other useful atomic primitives. But
the programmer can just usertl test and set and ignore processor differences. To illustrate, consider
a system for sharing a collection of buffers among a set of concurrent tasks. This algorithm works well
as long as the search is not too long and it works just as well on multiprocessor machines as it does on
uniprocessors. Furthermore, both the allocate and free functions are interrupt handler safe.

struct mybuffer { unsigned int flags; char data[DATASIZE];};
struct mybuffer B[NUMBER_OF_BUFFERS] = {0, }; //zero it

struct mybuffer *allocate_mybuffer(void){
int i;
for(i=0; i< NUMBER_OF_BUFFERS; i++)

if(!rtl_test_bit_and_set(0,&B[i].flags))
return &B[i];

return (struct mybuffer *)0;
}

void free_mybuffer (struct mybuffer *b){
b->flags = 0; // store is atomic
return;

}

Test and set is not free, however and SMP programmers need to be aware of the problem of
cache ping-pong[G9].

The RTCore one-way-queues do not need locks or even test-and-set operations. The one-way-
queues work when there is a single reader and a single writer. I’ll illustrate with a packet routing
system. Therx handler could be called on interrupt, get a message and queue it for a thread that could
modify and then queue the modified messages for output. Thetx handler would then be called on
interrupts to recycle storage of transmitted messages.
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Example 11 #include <onewayq.h>

typedef struct {int flags; unsigned char d[SZ];} *mypacket_t;
BUILD_OWQ(pq_t,128,mypacket_t,-1);
pq_t txq,modifyq;

rx_handler() {
if(norxerror()){

if(-1 == pq_enq(&modifyq,newpacket())) fail();
}

}
tx_handler() {

/* one transmit done. throw away sent packet */
m= pq_deq(&txq);
free_message(m);

}

...

modify_thread(){

while(!stop){
while( (m = pq_deq(&modifyq)){

process(m);
pq_enq(&txq,m);

}
timespec_add_ns(&t0,DELAY_NS);
clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t0, NULL);

}
}

In this example, violations of the just-in-time rule don’t cause a problem. Even if the two inter-
rupt driven tasks and the periodic thread all run in parallel on a shared memory multi-processor they
can safely share the queues. The RTCore one-way-queues take advantage of the fact that for a circular
array based queue, the head pointer and tail pointer are not shared – the consumer needs the head, and
the producer needs the tail. And a very large number of shared data structures can be treated as single-
producer/single-consumer queues. Note that we defeat concurrency problems here without explicit
locks, simply by designing the system to avoid a contention that, at first look, seems unavoidable.

How do we cope with multiple consumers or multiple producers? In that case, one answer is to
use locks. But note that we can have one lock for consumers and one lock for producers — effectively
decoupling two groups of threads in accordance with rule 7.
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4 Unavoidable synchronization

There are systems where scheduling conflicts are inescapable, but not as many as are generally be-
lieved. Unfortunately, sometimes we cannot guarantee that tasks obey the just-in-time rule. Before we
discuss how to synchronize, consider why we need to synchronize. When careful design analysis, or
more likely, software based on legacy architecture, cannot be designed just-in-time, synchronization is
required.

I want to distinguish three types of synchronization that are often used in combination.

1. Atomic code blocks. Using primitives to prevent protecting blocks of instructions so that they
are executed as a single block — as if they were a single atomic operation.

2. Synchronization via pre-emptible critical regions. This is the standard mutex-protected critical
region.

3. Synchronization via server centralization.

4.1 Atomic code block

”Atomic” is a relative term and needs to be qualified. A block of code between mutexes is atomic
with respect to thread switching: once the mutex is locked, no other thread can enter the code region.
A block of code between interrupt disable and interrupt enable operations is atomic with respect to
uniprocessor computations: no other computation on this processor can start until interrupts are re-
enabled (unless the code causes an exception like a divide-y-zero or page fault). A block of of code
between

Almost every modern processor provides methods of guarding a block of instructions so it can
run atomically. On a uniprocessor, we can usually just disable hardware interrupts which prevents
interrupts or preemption, on a multiprocessor we can use spin locks to prevent parallel computation.
These primitive operations are the basis for all other blocking synchronization methods: including
semaphores2

On a uniprocessor, any section of code can be made atomic by simply disabling interrupts.
RTCore offers methods that are similar to those found on nearly every operating system. Here’s a low
level method, not recommended, but shown for understanding.

/* DANGER! don’t do this use pthread_spin_lock instead */
rtl_stop_interrupts();
do some work // no preemption, no interrupts
...

rtl_allow_interrupts();

There are no fewer than four things to worry about in this simple example:

2 Unfortunately, it is no longer possible to always rely on the atomicity of primitive atomic operations. Chip designers
and firmware designers keep wanting to interfere with operating systems, mainly so they can “transparently” compensate for
buggy hardware. In this cause, x86 processors have SMI and other interrupts that ignore operating system directives and
advance anyway! This is really a tough one and can require careful selection of motherboards and BIOS software.
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1. What if interrupts were disabled already when we entered this code? In that case, we enable
interrupts at the end when we should not. This is easily solved. See below.

2. How long doesdo some work take? It had better be a small, simple and fast section of code
because disabling interrupts strikes at the heart of our response time.

3. What about a multiprocessor system? Disabling interrupts means that this task won’t be inter-
rupted or preempted. On an SMP system, it is still possible for another processor to ruin the
atomicity of the code. The answer here is spin locks - see below.

To solve the problem with multiprocessor systems, we need spin locks. The idea with a spin lock
is that a task loops trying test and set until it succeeds and the task gets the lock. The taskspinsuntil
it gets the lock. The POSIX defined spin locks arepthread spin lock andpthread spin unlock. In
RTCore, the locking call disables interrupts before the lock is set, and unlocking restores the interrupt
In a uniprocessor system setting and clearing the lock is omitted as an optimization (Linux spin-lock
does this too). Note that once a thread has acquired a spin lock, it cannot be interrupted or preempted
until it releases the lock or calls a blocking function of some sort (VERY inadvisable). Code within a
spin lock should be fast and deterministic. Don’t try to do complex computations with spin locks held.

The implementation of POSIX spin locks in RTCore is designed to prevent one of the standard
spin lock errors. If you acquire a spin lock without disabling interrupts, it is possible to deadlock
when a signal handler or preempting thread gets stuck on the same lock. Since the thread holding the
lock is not able to run, the attempt to get the lock results in deadlock. In RTCore,pthread spin lock
disables interrupts first and the unlock operation restores the previous interrupt state. This also solves
our problem of re-enabling interrupts by mistake. That’s why we recommend using the POSIX spin
lock operations on both SMP and uniprocessor systems. The ugly parts are hidden in the call, the
interface is a POSIX standard, and you won’t get a nasty surprise 3 years later when someone runs
your code on an SMP machine!

pthread_spin_lock(&myspin);
critical section // no preemption, no interrupts
...

pthread_spin_unlock(&myspin); // in a uniprocessor myspin is not locked

Suppose we altered our example above to allow for two receive devices sharing the same modify
queue (we could perhaps do better by using multiple modify queues and having the thread loop through
them, but let’s suppose we had no choice.) In this case we would have two producers, needing a spin
lock. The first rx handler could then be rewritten as follows.

rx_handler() {
if(norxerror()){

pthread_spin_lock(&modifylock);
error = myq_enq(&tx,newpacket());
pthread_spin_unlock(&modifylock);
if(error)fail();

}
}
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Note that the consumer of the modify queue does not need the spin lock since there is still only
a single consumer.

It’s possible to construct much more elaborate lock free data structures and many very clever
ones have been invented. [2] is a good start on the subject.

Just for completeness, here’s how you would implement a spin lock from test and set lock. Note
the optimization of not using the expensive test and set operation while we loop. Thevolatile key word
is used to prevent the compiler from deciding it can read the memory location once, put it in a register
and loop until the register value changes3.

void pthread_spin_lock(rtl_spin_t *s){
while(rtl_test_bit_and_set(0,&s->lock)){

// don’t use the expensive test and set,
while( (volatile)s->lock & 1);

}
}

Cache ping-pong is also a problem for spin locks.
For comparison, let’s do a quick analysis of semaphore costs and it’s here that the difference

between real-time and non-real-time becomes painfully obvious. On Linux, where semaphores have
been obsessively optimized the code for a IA32 processor is a macro that looks something like this:

down_semaphore:
atomic_decrement_instruction address_of_counter
jump_if_nonzero down_failed_code

The idea is that in thecommon casethere will be no contention anddown semaphore takes one
atomic decrement instruction and one failed branch and just falls through. On a fail, we jump to a ”C”
function since the semaphore blocking code is so costly anyways. For Linux, if 99.99% semaphore
down operations have no contention, the cost of the failure case is not significant and if there are many
failure cases, the problem should be solved by reducing contention. For a real-time programmer, this
solution is a partial solution but we need to always consider worst case.

See Vahalia [5] for an excellent textbook coverage of locking.

4.2 Guarded critical sections

Semaphores were used in section 3.3 as signaling mechanisms. They can also be used to guard critical
sections of code. A binary semaphore (mutex) may be locked as a thread enters a critical section
and unlocked as the thread leaves the critical section. In theory, semaphores have an advantage over
disabling interrupts and setting spin locks by imposing less delay for more important tasks and allowing
more efficient use of the processor. In practice, semaphore guarded critical regions need to be used with
care and are often much less efficient than the alternatives.

When they are correctly used, semaphore guarded critical regions are fine. I particularly rec-
ommend use of the POSIX mutex conditional waits to avoid the standard pitfall ofmissed wake-
ups[G10].

3Not all ”C” compilers do volatile properly. Sometimes you want to use an assembler escape to force correct behavior.
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4.2.1 Priority and semaphores

The biggest problem with semaphore guarded critical regions is that priority scheduling interacts with
semaphores in a very ugly way. Let’s first look at the simplest case.

A high priority task simply preempts a lower one, whether the lower priority task holds a lock
or not. If the time required forspin lock; critical; spin unlockis more than the time required for
semaphore wait, then a high priority task will be delayed less by a semaphore protected critical section
than a spin-lock protected region. But, this supposes that the critical region is relatively expensive and
that the high priority task does not need the semaphore. If the critical section cost is small, then spin
locks work better. One of the nice things about spin lock protected critical sections is that they are
totally modular: nobody waits more than the computation time of the slowest critical section.

Rule 8 If you are tempted to put a critical section within semaphores in order to allow preemption
during the section, try shortening your critical section.

If semaphores used to guard critical regions are shared between threads that are not all the same
priority, the system will encounterpriority inversion. Suppose that taskHigh and taskLow share a
resource guarded by a semaphore or some other blocking synchronization primitive. The standard
worst case is:

1. Low acquires the lock;

2. High preempts and there is a context switch;

3. High blocks on the lock, runs the scheduler;

4. Low restarts after a second context switch and then completes the protected operation, releases
the lock,and triggers scheduler.

5. High restarts after a third context switch and completes the protected operation and releases the
lock

To make this a little more concrete, if over-optimistic, suppose that context switches take 200
cycles, successful lock operations take 10 cycles, blocking lock operations take 100 cycles and the
scheduler takes 50 cycles. Then if the computation guarded by the semaphore takest cycles,High
waits 100 + 50 + 200 + t + 10 + 100 + 200 = 660 + t cycles forLow to complete. Note that if
Low used a RTCore spin-lock, then the total wait time forHigh would bet + 10 = 210 (in both cases
I’m ignoring the cost of the first context switch to runHigh since we have to pay it anyways.) The
advantage of the semaphore guarded method is thatSuperHigh can pre-empt bothHigh andLow as
long asSuperHigh does not also need the same semaphore.

The analysis above is optimistic for a couple of reasons, most notably the assumption thatLow
will get to run uninterrupted whileHigh waits. Many multi-tasking systems have a wonderful schedul-
ing property called “liveness”which guarantees that every task will get to run. In traditional UNIX
systems, the longer a process waits to run, the higher its priority, and the longer a task uses the CPU,
the lower its priority. One result is that a task that holds a lock will eventually get to advance and release
the lock. Most real-time systems are not “live”. A low priority task may be delayed, indefinitely by
higher priority tasks. If the low priority task is indefinitely delayed while it holds a lock that a higher
priority task is waiting for, we haveunbounded priority inversion.
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It is widely, but incorrectly, believed thepriority ceiling andpriority inherit mutexes solve pri-
ority inversion. The actual purpose of these methods is to solve onlyunboundedpriority inversion and
they do that at a cost. Priority ceiling associates a mutex with a priority so that if a lower priority thread
locks the mutex, it gets the higher priority while it holds the mutex, and if a higher priority thread
tries to lock the mutex, there is a failure. The cost is a priority switch on a mutex acquisition. This
may or may not be a big deal, depending on how the operating system is implemented — but think
about what happens to a priority ordered run-queue when a thread acquires a priority ceiling mutex.
Priority inheritance is a dynamic version of the algorithm that promotes a thread that holds a mutex
to the highest priority of any thread waiting for the mutex. See [6] for a detailed analysis of what
is wrong with priority inheritance, but note the intractability of the problem. In the example above,
the high priority thread is required to wait for the low priority thread, by design. Even if the various
priority juggling algorithms worked well (and they do not), they could not cure the design error of
making the high priority thread wait for the low priority thread that owns the semaphore. And the
complexity of these algorithms increases the cost of avoiding the spin locks. Unfortunately, we can
often create such situations unthinkingly by overuse of mutex or semaphore guarded critical regions.
In many cases, the purportedgain of permitting preemption during the critical section is not worth the
cost of synchronization.

I wrote a completely unoptimized enqueue function, ran it through thegcc compiler with op-
timization turned off and counted a total of under 20 instructions in the entire routine - the code path
is even shorter. Suppose we multiply by 5 to get 100 instruction cycles. You can see that enabling
preemption during execution of this operation gains us very little — and it can make the worst case
much worse.

4.3 Avoiding priority inversion

Rule 9 Semaphores guarding critical regions should never be shared by tasks of different priorities.
There is never a need to violate this rule.

Suppose we have a critical section that seems to contradict rule 9.

1. Make sure that there are no just-in-time solutions, the slow operations cannot be delegated to the
non-real-time side, and there are no lock-free solutions. If this fails, go to the next step.

2. Apply rule 8 and make the critical section so fast that spin locks work better. All critical sections
that refer to the same shared data need to be optimized in this way in any event.

3. If we have concluded that there is an absolute requirement for a slow atomic operation on the
data structure, design the system to make sure only tasks with the equal priority access this data
structure. If we cannot do that, it means that we have designed a system so that some taskA is
more important than some taskB but B still has the ability to blockA. Try very hard to remove
this contradiction. If this fails, go to the next step.

4. Essentially, priority ceiling is an indirect method of building a server. If you need a server, build
one directly don’t make an obscurely hidden one that can cause surprises later. Threads should
be cheap in the OS (they are in RTCore), make use of them. Servers are easy - see the example
below.

16



Suppose we have a data structureD that is accessed by methodsm1, . . .mn (these are all the
operations on this data structure). After much analysis, we see thatD must be shared among tasks of
unequal priorities, and that just-in-time and lock-free cannot be applied. Furthermore at least one of
the methods takes too much time to permit a spin-lock guard and there is no way to shorten it. Just to
make things interesting, say that there are many possible tasks that need to accessD and that we cannot
use reader/writer locks or otherwise structure access. There are several alternative methods here, but
one useful one is to use RT-FIFOs and semaphores to construct a server. If the RT-FIFOs turn out to be
too slow, then we were probably wrong about how computationally expensive the methods are, but we
could replace the fifos with one-way queues if needed. The server will serialize all operations onD.
No other task will directly operate onD, instead the tasks will make requests to the server. The method
is simple. Create a FIFO. Size the FIFO to bek ∗ r wherek is the size of a request structure andr is
the max number of requests that can be outstanding. The request structure may look like

struct myrequest{
sem_t *wakeme;
enum method_t method;
int priority;
int arg1,arg2,arg3;
}

A task makes a request by filling in amyrequest structure with a pointer to a semaphore that is
private to that task, a method identifier naming the operation to be executed, and some arguments. The
task then makes the request and waits.

r.wakeme = &mysem;
r.method = SortTheDatabase;
r.arg1 = 0;
r.arg2 = MAXROW;
write(req_fd,&r, sizeof(r));
sem_post(&server_wake);
sem_wait(&mysem);

The server looks something like the following.

while(1){
sem_wait(&server_wake);
while(read(req_fd,&req[next_free()],sizeof(struct myrequest)))

== sizeof(struct myrequest)
mark_used(next_free());

if(stuff_2_do()){
i = most_important();
do_request(i);
sem_post(req[i].wakeme);
mark_done(i);

}
}
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The priority of the server should be set to depend on the importance of operations onD. One
guide will the highest priority thread to touchD. A more sophisticated server could abort long running
low priority requests when higher priority ones showed up.

A Glossary

Glossary Definition 1 Deadlock is the condition where some task waits for another task to re-
lease a resource and the second task is waiting (maybe indirectly) for the first task to re-
lease a resource: so there is no forward path. For example if taskA has a code se-
quencelocksem1; locksem2; work; releasesem2; releasesem1 and taskB has a code sequence
locksem2; locksem1; work; releasesem1; releasesem2, then if A is locks1 and thenB locks 2,
neither will be able to progress to release. Another classical deadlock case is cause by taking a spin-
lock without disabling interrupts. Suppose that taskA sets spin-lockL and then is interrupted by a
service routine that spins onL - there is no way to advance.

To prevent deadlock, there are two answers. First, use atomic or safe operations whenever pos-
sible instead of building your own synchronizing systems. The RTCore RT-FIFOs offer a safe and
efficient method of exchanging information between threads that has been well debugged and validated
by years of use. Second,KEEP IT SIMPLE. The times in which it is a good idea to acquire multiple
locks are exceptionally rare and it is almost always the case that a design of that form is just plain
wrong. Never acquire a lock in one function and release it in a second — locks and unlock should be
close together in the code text (unless the lock is a signaling lock). One of my cautions about using
mutexes anywhere is that it is easy to create mutex chains without thinking about it. If functionf gets
mutexa and calls functiong which gets mutexb and we modifyg to callh which also getsa, we have
created a deadlock. Some people advocate recursive mutexes as a solution — based on the theory that
it is ok to write software without understanding what components lock which mutexes.

Glossary Definition 2 SynchronizationEven something as simple asx = x+1 is a three step operation
on most processors: (1) fetch, (2) increment, and (3) store the result. On a multiprocessor computer, as
one processor goes through these three steps, it is possible that another processor will readx or store a
new value inx in parallel. For example, suppose thatx contains the number100 and processorA and
B both start to increment at the same time. IfA andB complete 1 and 2 at the same time, then both will
store the value101 to x in step3 — while the correct value should be102. The same problem occurs
in single processor computers due to input/output operations and interrupt processing. Input/output
devices capable of direct memory access (DMA) can change memory in parallel with the processor.
Interrupts cause the processor to jump to an interrupt handler, which may call a scheduler. In such a
situation, taskA may be interrupted, say, after step 1, and then if taskB is run and modifiesx, when
taskA is resumed it will store the wrong value.

Task A fetchx store x
Task B fetchx add 1 store x

Glossary Definition 3 Concurrentis used to refer to either actual parallel computation or pseudo par-
allel computation caused by interrupts and preemption (when the running task is forced to stop to let a
second task run). In either case, competing operations on the same data can result in data corruption.

Synchronization operations act as gateways to ensure that only one task can use a shared resource
at one moment.
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Glossary Definition 4 Real-timeDefinition of real-time software

Glossary Definition 5 DeadlocksA deadlock is when no task can progress because each is waiting for
another one to release some resource. For example, if we have2 buffers and taskA andB both need to
allocate2 buffers, and each allocates1 and then blocks waiting for the other to release the other buffer.
or live-lock4

Glossary Definition 6 SemaphoresSemaphores are perfect for event driven programming although
they certainly were not designed with real-time in mind. In Dijkstra’s famous paper on theTHE op-
erating system introduced semaphores [1], he notes specifically that theabsenceof timing constraints
on processes was a key design consideration. As Parnas notes, THE was not a particularly fast system
even in non-real-time terms [3].

Glossary Definition 7 Interrupt handler.An interrupt handler is a function that is called in response
to a hardware interrupt. For example, a data acquisition device may signal the processor that it has
collected a sample. When hard interrupts are enabled and such a signal is asserted, the processor will
save a small subset of processor state and jump to low level operating system code that will, in turn, call
any interrupt handlers that users have installed. In RTCore, real-time interrupt handlers can be installed
via thertl request irq operation or via the POSIXsigaction call. Interrupt handlers run effectively at
the highest priority level, pre-empting any running task but they run at the priority of the interrupted
thread.

One of the key implementation differences between UNIX and VMS operating system was that
VMS ran interrupt service routines as processes, but UNIX ran interrupt service routines in the the
context of the running process. The rationale for the UNIX implementation is to make interrupt service
more efficient by eliminating one context switch and some scheduler overhead. RTCore runs interrupt
handlers in the context of the current thread for the same reason. The trade-off for running interrupts
in the context of the current task is that system state is harder to understand. Until you get used to the
idea, running an interrupt handler in any random executing task is counter-intuitive. Remember that
interrupt handlers run outside of the normal priority scheme: handlers are always higher priority than
the current thread. To take advantage of the low call overhead, interrupt service routines should be
small and fast and should activate tasks for additional work if needed.

Glossary Definition 8 . According Glenn Reeves[4] the problem was buried inside the VxWorks I/O
subsystem. A low priority task (theASI/MET task) was connected to the high prioritybc dist
task via a VxWorks IPC mechanism. TheASI/MET task made aselect call that, within VxWorks,
invoked a semaphore protecting the file descriptors under the select. One of these file descriptors
was for the IPC pipe betweenbc dist andASI/MET . Before the semaphore could be released, the
ASI/MET task was preempted by some medium priority tasks. The next invocation of the higher
priority bc dist task then stalled when it attempted to send more data on the IPC pipe. Classical
unbounded priority inversion.

From Reeves summary, it appears as if the ASI/MET task broke the conventions of the system by
making use of the pipe mechanism in place of the double-buffered shared memory used for by all other
tasks. So the ASI/MET task made use of VxWorks IPC, and VxWorks IPC made use of a semaphore.
This, in my humble opinion, amply illustrates the dangers of mutexes, buried in lower level code and

4When a task is ready to run but other tasks use up all of the processor time.
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producing a critical path as a side effect. Note that double-buffered shared memory, or a lock-free
queue, or even a queue with atomicenq anddeq operations would have avoided this error. To “fix”
the error, NASA programmers enabled VxWorks priority inheritance for theselect code. The fix
worked for two reasons: the system generally avoided semaphores and the engineers had good luck.

Black boxes that contain mutexes are dangerous.

Glossary Definition 9 Cache ping-pong .
In a shared memory multiprocessor test and set is not necessarily a cheap operation. I mentioned

cache ping-pong above. When a processor does test and set operation on some memory location, it
must instruct all other processors to invalidate their cached copies of that memory. Now suppose that
processor1 test and sets locationa, processor2 then tests and setsa and so on. Each test and set will
include a global invalidate and a cache miss. Cache ping-pong can also be caused by shared locations
that are on the same cache line. For example, suppose the structure

struct { unsigned int flags; int count; }G;

was used so thatG.count was read all over the place and only changed by the owner - selected by using
a test and set operation that ran often. In that case a processor that referencedG.count would almost
certainly have a cache miss, since the test and set would cause all processors to discard the entire cache
line containingG.flags.

Glossary Definition 10 Missed wakeups. Suppose that taskA executes the codeif(x ==

0)wait on(&q) and after the comparison, but before the mutex runs, an interrupt handler executes
the codex = 1; wake(q). The handler will find nobody to wake, but taskA will resume and then wait,
maybe forever because it missed the wakeup. Semaphores and mutexes are designed to minimize this
problem.

Glossary Definition 11 Atomic primitives.Some processors have the ability to execute multi-step op-
erations atomically by locking out interrupts and other processors. For example, in the x86 processors
lock inc atomically increments a memory location, using a so-called read-modify-write cycle to pre-
vent any other processor from modifying the location. The x86 also has a very useful bit test and set
instruction that atomically tests a bit and sets the bit to1.

To avoid missed wakeups, there are several good answers. The standard POSIX threads answer
is the condition wait and that’s often a good method. POSIX condition wait atomically releases a
mutex and puts a thread on the condition wait queue. A wakeup of a thread on the condition wait queue
atomically re-acquires the mutex and wakes the thread. This method is excellent for code of the form

lock mutex
while condition is false

conditional wait
unlock mutex

It’s also possible to use timeouts — and with care this can be the best solution. The most useful
cases are where the thread that can miss the wakeups is not critical. Here we can reduce synchronization
overhead by simply ignoring the missed wakeup and arranging to timeout.
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while condition is false and time delay not expired
conditional wait

Glossary Definition 12 Threads.The POSIX standard defines a thread as follows.

A single flow of control within a process. Each thread has its own thread ID, schedul-
ing priority and policy, errno value, thread-specific key/value bindings, and the required
system resources to support a flow of control.
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