
Discrete state variables

Victor Yodaiken
POB 1822

Socorro NM 87801 USA
Copyright Victor Yodaiken 2001-2004. All rights reserved.

yodaiken@fsmlabs.com

Abstract

Moore machines[6] provide a mathematically and intuitively clear model of computing systems — both
devices and software. In this note, I show recursive functions on finite event sequences to define or specify
properties of the very large scale Moore machines corresponding to non-trivial computer systems. Composition
is given by a form of simultaneous recursion to allow arbitrary interconnection.

1 Introduction

If a setA contains names of events that can change the state of a discrete state system then each finite string
of eventsw describes a path from the initial state of the system to some resulting state. The externally visible
behavior of the system can be specified by a function on strings so thatfw is the output of the system in the
state reached by followingw from the initial state. In this paper, I will show how to use such string functions to
specify the behavior of complex discrete state systems - including those that change state in real-time - and also
how to use string functions to describe the construction of complex systems from simpler ones. String functions
are mathematically equivalent to Moore machines [6] but turn out to be easier to work with when the underlying
state systems are large, partially specified, and constructed from simpler parts.

1.1 Basics

Write ε for the empty sequence andwa for the sequence obtained by appending eventa to sequencew. Let’s
look at a few simple definitions.

• Define a counterC by C ε = 0 and(C wa) = 1 + (C w) to count the number of events.

• Say anyf is astorage cellover setV only if f wa = a for anya ∈ V andf wa = f w for a 6∈ V .

• The behavior of one function may be specified in terms of the behavior of others. Given a temperature
sensing boolean signalBoiling we might require thatBoiling w ≤ ValveOpen w.

• There are several ways to model real-time state system, but to me the most natural method is to treat events
as discrete samples of signals applied to inputs. Each sequence of samples then represents an interval or
duration. Starting simply, consider a circuit with a single input pin and single output pin. Events can be
from the alphabet{0, 1} to represent the low (0) and high (1) logical signals over one time unit. Define
High1 ε = 0 andHigh1 wa = (High1 w+1)∗a) andLow1 ε = 0 andLow1 wa = (Low1 w+1)∗ (1−a)
so High1 w is theduration of the interval in which the input has been held at high andHigh1 w = 0
when the most recent event drove the input signal low. Specify thatf models awire with delayt only if
High1 w > t impliesf w = 1 andLow1 w > t impliesf w = 0.

• To make circuits a little more flexible consider events that are maps from a setP of pins to{0, 1}. Thena
drives pinp toa(p). So(High w) would be a map from pins to integers with(High w)(p) being the duration
that the input pinp has been held high. Define(High ε)(p) = 0 and(High wa)(p) = ((High w)(p) + 1) ∗
a(p). Say thatG is an AND-GATE with delayt only whenever(High w)(p) > t for every pinp then
G w = 1. I’ll return to gates with more realistic models below.

1



• Consider a memory bank with events consisting of pairs〈l, v〉 assigning a valuev to a storage locationl.
Specify that the outputMbank w must be a map fromL to V and that(Mbank wa)(l) = v if a = 〈l, v〉
and(Mbank wa)(l) = (Mbank w)(l) otherwise.

The specification of an AND-GATE or memory bank above can be satisfied by an infinite number of
functions on sequence. This is the usual state of affairs - we rarely can define every possible system behavior
precisely. Some researchers approach under-specification by treating systems as inherentlynon-deterministic,
but this seems unnecessary complication. If we specify that wheneverTemp w > 100 it must be the case that
ValveOpen w > 0 we have no need to pretend that valves “choose” what to do non-deterministically. Similarly,
if we specify that

∑
p∈Processes(Running w)(p) ≤ 1 we don’t have to pretend that the operating system schedul-

ing mechanism is unknowable. The locus of indeterminacy can be conveniently and more realistically placed in
the specification instead of in the model or the system itself. We can use the simplifying assumption thatG
andValveOpen andRunning are a total functions on sequences and then let specifications of and-gates, valve
control, and scheduler admit to a number of solutions so that the functions are nowhere near totally determined
by the specifications.

1.2 Construction

Some researchers model composition onconcurrent threadsor some other programming language model but
those are neither mathematically well-behaved or universal. The model used here is drawn from Gecseg’s “gen-
eral product” of state machines [2] which turns out to have a natural representation in terms of recursion. The
intuition is that a composite system can be constructed by connecting a collection of simpler systems so that
composite events generate sequences of events for the components. The component events are a function of the
composite system events and thefeedback- the outputs of the components. For example, supposef andg are
both wires with delayt and we wantE to be constructed by connecting the wires in series. We can define that
any composite event is passed directly tof and generates an event forg that is equal to the output off . That
is defineE as the product off as component1 andg as component2, so(E w)(i) is the output of component
i and so that in the state determined byw, the eventa generates sequence〈a〉 for component1 and〈b〉 where
b = (E w)(1) for component2.

More formally, F =
∏

i[φ]fi definesF andF∗ simultaneously so that(F w)(i) = fiwi wherewi =
(F∗w)(i) and(F ∗ε)(i) = ε and(F∗wa)(i) = concatenate(wi, φ(i, a,Fw)).

Here are some illustrative examples.

• A wire constructed by connecting two wires together at one point can be specified asE =
∏i=2

i=1[S]fi
wherefi is a wire with delayti andS(i, a,Fw) = 〈a〉 if i = 1 and〈(Fw)(i− 1)〉 otherwise.

• A shift register constructed from storage cellss0 . . . sn where we have a special event “rotate” and all other
events are just data to be pushed into the register.

Shift =
n∏

i=1

[R]si

where

R(i, a,Shiftw) =

 〈a〉 if a 6= rotate andi = 0;
(Shift w)(0) if a = rotate andi = 0;
(Shiftw)(i− 1) if otherwise ;

• For a more complex construction consider a uni-processor executing some collection of processes that
access a shared memory bank. The intuition is that on each step one process advances by reading and
writing memory. One of the memory locations “current” is used to hold the index of the process to run. We
can reuse the memory bank and hold off on the process specification except to require that there is a maph
on process output that produces a sequence of writes to memory. DefineZ =

∏
c∈Processes,m[K]fc where

2



eachfp : p ∈ Processes satisfies the to be defined specification for processes andfm is a memory bank.
Define(Running w)(p) = 1 if and only if (Z w)(m)(current) = p and(Running w)(p) = 0 otherwise.
Now defineK(i, a, Z w) so that fori ∈ Processes if (Running w)(i) = 0 thenK(i, a, Z w) = 〈〉 and if
(Running w)(i) = 1 thenK(i, a, Z w) = 〈(Z w)(m)〉. So the non-running processes don’t change state
and the running process gets the contents of memory as an input. As for memory, defineK(m,a,Z w) =
h((Z w)(p)) for the onep so that(Running w)(p) = 1. Note that a process can’t instantly react to memory
contents - as with real computer systems, processes need to read in one state and then write in a second
state.

Proving properties of composite systems is, of course, key to getting any real use out of this method and
so it’s worth pointing out a sort of distributive law that makes such proofs easier. Iffw impliesgw thenfwi will
imply gwi. Furthermore, we can treat sequence functions as virtual instruments, dropping them down into the
states of components by evaluating them in terms of the sequence seen by that component. Here’s an example
where we might want to know whether one memory location was changed before or after a second memory
location. Define(Tε)(l) = 0 and(Twa) = 1 + (Tw)(l) if a 6= 〈l, v〉 for somev, and to be0 otherwise. In
our uni-processor system letwm = (Z ∗w)(m) - the sequence of events seen by the memory bank, and then
(Twm)(l) > (Twm))(l′) meansl was last written beforel′ was written.

In the next two sections, I’ll look at some more detailed examples and some proofs. The second example
covers the construction of a latch from two nand-gates – one of the most amazing and fundamental constructions
in computer engineering. The first example proves the correctness of a venerable and beautiful mutual exclusion
algorithm based on self-modifying code. In the final section, I’ll take a very brief look at the relationship between
these functions on sequences, state machines and monoids.

2 Operating systems: Mutual exclusion

NOTE: This example uses a very old method of mutual exclusion and I just can’t find the reference. If any reader
can help me out on this,I would appreciate it very much.

Take the composite system definition above as a starting point:

Z =
∏

c∈Processes
⋃
{m}

[K]fc

whereProcesses is a set of functions on sequences that all obey a, to be detailed, Process specification, andm
is a memory bank on a setL = {0, . . . , N, current} of labels and a setV = {0, . . . N . . .N ′} ∪ Processes
so that(fmw) is a map fromL to V . Note I’ve added a special memory locationcurrent for storing the
index of the current (running) process. DefineRunning w = (Z w)(m)(current) and define(Mem w)(l) =
(Z w)(m)(l) for convenience. Now suppose we also have(PC w) : Processes → L that gives us the program
counter (instruction pointer) for each process. Our processes read instructions from the shared memory and
the program counter is the address of the next instruction. DefineOp w = (Mem w)((PC w)(Running w))
for the contents of the memory location pointed to by the program counter of the running process. Finally, we
need(Advance w) = 1 if and only if the last composite event marked the completion of an instruction and
(Advance w) = 0 otherwise. Instruction execution is only one of the ways the composite system can change
state (I/O events and interrupts should not be ignored although they are not important in this particular exercise.)
Define Here are some rules (I’ll use the convention from Graham and Knuth that[condition] has value1 if true
and0 otherwise):

• On instruction execution, at most one process will change PC.

((Advance wa) ∗
∑

p

[(PC wa)(p) 6= (PC w)(p)]) ≤ 1 (1)

3



• If the pc of the current process points to an instructionmove v l then execution of that instruction sets
memory locationl to v, advances the program counter of the running process by1 and has no other effects.

If ((Advance wa) ∗ [(Running w) = p] ∗ [(Op w) = move v l]) = 1
then(Mem wa)(l) = v and forl′ 6= l, (Mem wa)(l′) = (Mem w)(l′)

and(PC wa)(p) = (PC w)(p) + 1 (2)

• If the pc of the current process points to an instructionjump l then execution of that instruction sets the
program counter of that process tol and has no other effects

If ((Advance wa) ∗ [(Running w) = p] ∗ [(Op w) = jump l]) = 1
then for everyl′, (Mem wa)(l′) = (Mem w)(l′)

and(PC wa)(p) = l (3)

Now suppose we have a subsetC of L consisting ofcritical locations and we want to ensure that at most
one process is in the critical section in any state:

(∗)
∑

p

[(PC w)(p) ∈ C] ≤ 1

Let’s pick out two locationsentry andexit with entry 6∈ C andentry+1 ∈ C andexit ∈ C with exit+1 6∈ C.
Let’s require that processes only enter and exit the critical region by executing instructions in the entry and exit
locations and that, initially, no process is in the critical section.

If [(PC wa)(p) ∈ C] > [(PC w)(p) ∈ C] then(PC w)(p) = entry and(Advance wa) = 1 (4)

If [(PC wa)(p) ∈ C] < [(PC w)(p) ∈ C] then(PC w)(p) = exit and(Advance wa) = 1 (5)∑
p

[(PC ε)(p) ∈ C] = 0 (6)

Now we require that the contents ofentry should only be changed by execution of the instructions at entry or
exit and that the instruction at exit remains unchanged and we will be ready to specify the mutual exclusion
algorithm itself.

If [(Mem wa)(entry) 6= (Mem wa)(entry)]
then(PC w)(Running w) ∈ {entry, exit} and(Advance wa) = 1 (7)

[(Mem wa)(exit) = (Mem w)(exit)] (8)

The key to the algorithm is in the contents ofexit and the initial contents ofentry. Let z0 =
”jump entry andz1 = move z0 entry. Then

(Mem ε)(entry) = z1 (9)

(Mem ε)(exit) = move z1 entry (10)

is the algorithm! The basic idea is that the first process to execute an instruction atentry executesmove z0 entry
and drops through intoC (sinceentry + 1 ∈ C) and changesentry to hold jump entry. Any other process
trying to enter will execute the jump instruction atentry and this will jump it back toentry. When the first
process leaves the critical region by executing the instruction atexit it will drop out of the critical region (since
exit + 1 6∈ C) and open the gate again by resetting the value ofentry to move z0 entry

4



To prove that these requirements are sufficient to assure(∗) we prove a stronger property that other
properties A and B both hold. Note thatA implies(∗).

(A) (
∑

p

[(PC w)(p) ∈ C]) + [(Mem w)(g) = z1] = 1

(B) [(Mem w)(entry) = z0] ≤
∑

p

[(PC w)(p) ∈ C])

In the initial state, we have
∑

p[(PC ε)(p) ∈ C] = 0 by 6 and so 9 we haveMem ε(entry) = z1 (A) is true
initially, and since(Mem ε)(entry) 6= z0 and no processes are inC, we also haveB. AssumeA andB are true
in the state determined byw and considerwa. Let n =

∑
p[(PC w)(p) ∈ C] andna =

∑
p[(PC wa)(p) ∈ C].

If n = na then there is no process such that[(PC w)(p) ∈ C] 6= [(PC wa)(p) ∈ C] because otherwise (by 4
and 5) that would be the unique process with this property and sona could not be the same asn. By 7 only an
instruction execution by a process atentry can changeentry and by the induction hypothesis that instruction
is eitherz1 or z0. If the instruction wasz1 then after the instruction by 2 the executing process will be inC
which contradictsn = n0 and if the instruction wasz0 then after the instruction by 3 the contents ofentry don’t
change. So ifna = n the number of processes inC is unchanged and the contents ofentry is unchanged soA
andB must hold in thewa state. Ifna < n thenna = 0 andn = 1 there is some uniquep so thatp leaves
the critical region andp executes the instruction atexit which by 2 and 5 means that(Mem wa)(entry) = z1

which means that in thewa state there will be no processes in the critical region and bothA andB will be true.
If na > n thenna = 1 andn = 0 and somep enters the critical region. By 4 processp must have program
counter atentry and since it does enter, we must haveentry containingz1 and execution of the instruction will
causeentry to containz0 which meansA andB will both be true.

3 A hardware example

Some fundamental notions of boolean functions are needed and these are adapted from [5].
The signals assigned to input pins can be represented by functions from pins to{0, 1} and each such

assignment event can be considered to be a discrete sample of the input values asserted on pins for some time
unit. Counting samples measures duration. We also want to countsubsetsof samples when we only care about
the signals on some pins and the others are “don’t care”. If you hold any input pin of anand-gatelow (0) long
enough or hold any input pin of anor-gatehigh (1) long enough, the output will stabilize at, respectively, 0 and
1. We need to formalize this property in order to be able to describe how a device as simple as a gate works. A
circuit has a set of input pins and one or more output values — which may be physically the same pins. Events
are mapsPins → {0, 1} which indicate a signal value for the set of input pins. It’s convenient to consider these
event functions assetsof pairs - like{(pinA, 0), (pinB, 1)}. If we defineHeld so (Held w)(β) tells us how
long, how many of the last consecutive samples have containedβ as a subset, then an or-gate with delay oft
should output1 if any pin has been held to1 for at leastt time units: if(Held w)({p, 1}) > t for some pint.

(Held ε)(β) = 0 (11)

(Held wa)(β) = ((Held wa)(β) + 1) ∗ [β ⊂ a] (12)

Now sayC implements a NAND gate with delay oft if and only if for any β with some(p, 0) ∈ β
[(Held w)(β) ≥ t] ≤ (C w). and forβ whereβ(p) = 1 for every pinp: [(Held w)(β) ≥ t] ≤ (1− (C w)).

Lets write (#C w)(b) for the time that the output ofC has been equal tob: (#C ε)(b) = 0 and
(#C wa)(b) = [(C wa) = b] ∗ (1 + (#C w)(b)) Note that (Held w)({(p, 0)}) = tG + n implies that
(#C w)(1) ≥ n for a NAND-gate and ifβ1p = 1 for all the pinsp for NAND-gateC then(#C w)(0) ≥ n
whenever(Held w)(β1) ≥ tG + n.

5



A latch. The circuits defined above are calledcombinatorial— output fluctuates as a time delayed function of
input. For every such circuit there is somek so that the current output can be deduced from the lastk events (if
the output is forced). In contrast, a latch is a primitive memory device that can store a value indefinitely. There
is no fixedk for a latch — the current output may have been stored at an arbitrarily long time in the past. The SR
latch has two input pins1 and2 for setandreset. Let’s distinguish three special samplesSET = {(1, 1), (2, 1)},
RESET = {(1, 0), (2, 0)}, andHOLD = {(1, 1), (2, 1)} - the fourth combination is not permitted and its
effects are unspecified. The idea here is that ifHeld w)(SET ) > t will latch 1, (Held w)(RESET ) > t will
latch0, (Held w)(HOLD) > 0 will keep the latched value unchanged if a value has been latched. Let’s define
Lset andLReset to track whether something has been latched.

Lset ε = 0; (Lset wa) = [([(Held wa)(SET ) ≥ t] + (Lset w) ∗ [a = HOLD]) > 0] (13)

LReset ε = 0; (LReset wa) = [([(Held wa)(RESET ) ≥ t] + (LReset w) ∗ [a = HOLD]) > 0] (14)

SayL implements a SR latch with delayt if and only if L operates on{1, 2} assignmentsL w ∈ {0, 1}
and(L w)(1) ≥ Lset w and(L w)(1) ≤ (1− LReset w).

A latch construction. An SR latch can be constructed bycross-couplingtwo nand-gates. Suppose thatG 1 and
G 2 implementnand on P = {1, 2} with delaytG. If i = 1 let i′ = 2 and if i = 2 let i′ = 1 — i′ is the other
wire. DefineL =

∏i≤2
i=1 G i[cross] to operate on{1, 2} assignments andcross(a, i, L w) = 〈c〉with c(1) = a(i)

andc(2) = (L w)(i′) Now we want to prove thatL implements an SR latch fort = 3tG + 3.

Proof Let wi = (L ∗w)(i) and letai = cross(a, i, L w). Note that sincecross(a, 1, z)(1) = a(1) we
havea1(1) = a(1) and Note that sincecross(a, 2, z)(1) = a(2) we havea2(1) = a(2). It follows that
(Held w)(SET ) ≤ (Held w1)({1, 0})
(Held w)(RESET ) ≤ (Held w1)({1, 1})
(Held w)(SET ) ≤ (Held w2)({1, 1})
(Held w)(RESET ) ≤ (Held w2)({1, 0}). So if (Held w) > 3tG + 3 must imply(Held w1)({1, 0}) > 3tG + 3
so (#G 1w1)(1) > 2tG + 2 so (Held w2)({(2, 1)}) > 2tG + 1. Thus(Held w2)({(1, 1), (2, 1)}) > 2tG + 1.
It follows that (Held w1)({(1, 0), (2, 0)}) > tG. What we have shown is that if(Held w)(SET ) > t then
(Held w2)({(1, 1), (2, 1)}) > 2tG + 1 and (Held w1)({(2, 0)}) > tG. Definitions of cross and nand-gate
show that if those conditions apply in thew state, they will be true in thewa state fora = HOLD. Thus
(L w)(1) ≥ Lset w. The RESET case is similar.

4 Semi-final notes and semigroups

Given a Moore machine(A,S, δ, λ), the transitive extensionδ∗ is defined byδ∗(s, ε) = s and δ∗(s, wa) =
δ(δ∗(s, w), ae). Say thatM implementsthe functionM : A∗ → X so thatM(w) = λM (δ∗M (s0, w)). Given a
mapf : A∗ → X define a congruence overA∗ so thatw ∼=f u if and only if for everyz ∈ A∗ f(wz) = f(uz).
Say thatf is finite if and only if E∗/ ∼=f is a finite set. Note thatf is finite if and only if it can be implemented
by a Moore machine with a finite state set. For proof it suffices to construct a finite state Moore machine fromf
usingE∗/ ∼=f as the state set to show that iff is finite it can be implemented by a finite state Moore machine
and and to show that ifM implementsf andδ∗(s0, w) = δ∗(su, u) thenw ∼=f u — so thatf is finite if M has
a finite number of states.

It’s useful to note that ifh1, . . . hn are finite andg has a finite image, thenF =
∏

i[g]hi must also be finite.
The recursive composition used here to model structure is a functional variant of thegeneral productof state
machines defined in [2]. There are some unexplored relationships between this product and the classical results
of algebraic automata theory, described by Holcombe [4], Arbib [1] and Ginzburg [3]. Simply by refining our
congruence, so thatw ∼u iff for all z, v ∈ E∗ we havef(vwz) = f(vuz) we get a monoid under concatenation
of representatives. Classical algebraic automata theory investigates the relationship between the monoids induced

6



by finite state machines and the monoids of their products. The focus was on cascade and wreath products with
no feedback: in our context whereei does not depend onfw. This leads at once to some questions about
what happens when feedback is constrained, but not forbidden. For example, in modeling circuits, the type
of connection map used in the latch example above seem generally useful. These have a couple of constraints
including length(ai) = 1. For most circuit technologies it is also required that there are strict limits on fan-
in and fan-out. And, for most circuit models we will probably require thatwa.C = wa′.C for any a anda′

because circuit output would otherwise change instantaneously: something not seen in nature. In general, when
we connect components, the connection is a solder dot or a shared memory location or register or a network. That
is, the connection is, in practice, constrained to simply copy data. It follows that connection maps, in accurate
models of systems, will be very simple functions Would all these constraints tell us something about the structure
of the composite state functions and their monoids?

5 Notes

A much earlier version of this work can be found in [8] with applications in [7] and [9]. Unfortunately, it took
me 12 years to understand good advice from Professor George Avrunin that the formal logic notation was an
impediment instead of an advantage.

References

[1] Michael A. Arbib. Algebraic theory of machines, languages, and semi-groups. Academic Press, 1968.

[2] Ferenc Gecseg.Products of Automata. Monographs in Theoretical Computer Science. Springer Verlag,
1986.

[3] A. Ginzburg.Algebraic theory of automata. Academic Press, 1968.

[4] W.M.L. Holcombe.Algebraic Automata Theory. Cambridge University Press, 1983.

[5] Edward J. McCluskey.Logic Design Principles. Prentice-Hall, 1986.

[6] E.F. Moore, editor.Sequential Machines: Selected Papers. Addison-Welsey, Reading MA, 1964.

[7] V. Yodaiken and K. Ramamritham. Verification of a reliable broadcast algorithm. In J. Vytopil, editor,
Formal Techniques in Real-Time and Fault-Tolerant Systems, number 571 in LNCS. Springer-Verlag, 1992.

[8] Victor Yodaiken. Modal functions for concise representation of finite automata.Information Processing
Letters, Nov 20 1991.

[9] Victor Yodaiken and Krithi Ramamritham. Specification and verification of a real-time queue using modal
algebra. InIEEE Real Time Systems Symposium, 1990.

7


