
Primitive Recursive Presentations of
Transducers and their Products

Victor Yodaiken⋆

FSResearch LLC ,
2718 Creeks Edge Parkway
yodaiken@fsmlabs.com

http://www.yodaiken.com

Abstract. Methods for specifying Moore type state machines (trans-
ducers) abstractly via primitive recursive string functions are discussed.
The method is mostly of interest as a concise and convenient way of
working with the complex state systems found in computer programming
and engineering, but a short section indicates connections to algebraic
automata theory and the theorem of Krohn and Rhodes. The techniques
are shown to allow concise definition of system architectures and the
compositional construction of parallel and concurrent systems.

Key words: transducer, Moore machine, primitive recursion, composi-
tion, parallel

1 Introduction

The engineering disciplines of programming and computer system design have
been handicapped by the practical limitations of mathematical techniques for
specifying complex discrete state systems. While finite automata are the natural
basis for such efforts, the traditional state-set presentations of automata are
convenient for only the simplest systems and for classes of systems, but become
awkward as state sets become large and in the presence of partially specified
behavior or compositional systems. Furthermore, it would be nice to be able to
parameterize automata so that we can treat, for example, an 8bit memory as
differing from a 64bit memory in only one or a few parameters. These problems
can all be addressed by using a recursive function presentation of automata that
is introduced here.

General automata have long been understood to be functions from finite
strings of input symbols to finite strings of output symbols[1] but for specifying
computer systems it is more useful to consider functions from finite strings of
inputs to individual outputs. The intuition is that each string describes a path
from the initial state to some “current” state and the value of the function is
the output of the system in the “current” state. If A is an alphabet of input
events and X is a set of possible outputs, let A∗ be the set of finite strings

⋆ This paper replaces multiple earlier rough drafts.



2 Yodaiken

over A including the empty string Λ and then a function f : A∗ → X defines a
relationship between input sequences and outputs. These functions can be shown
to be strongly equivalent to (not necessarily finite) Moore type automata[5] while
abstracting out details that are not interesting for our purposes here. If a is an
input and w is a string, wa is the result of appending a to w and by defining
f(Λ) = x0 and f(wa) = h(a, f(w)), we can completely specify the operation of
f .

Correspondence between a transducer M and a string function f .

Input:w ⇒ Machine:M ⇒ Output:x
f(w) = x

It turns out that a type of simultaneous recursion can be used to specify
automata products that model composition and parallel (and concurrent) state
change. Suppose that f1, ...fn are previously defined string functions, fi : A

∗
i →

Xi and we wish to combine these into a system where inputs from some alphabet
A drive the components forward. At each step an input a to the composite
system will be used to generate an input sequence zi for each component fi.
The input sequence for the component is a function of both a and the feedback,
the outputs of the components. The composition builds a new function f from
f1 . . . , fn plus a communication map g and an output mapping h. Let f(w) =
h(fi(u1) . . . , fn(un)) where the ui are themselves primitive recursive functions
of f and w. I will write ui when w is clear from context and use functional form
ui(w) otherwise. We always require that ui(Λ) = Λ — so that in the initial state
of the composite system every component is in its own initial state. Let w ◦ z
be the string obtained by concatenating w and z. The communication map is
used as follows:ui(wa) = ui(w) ◦ g(i, a, f(w)). The idea is that appending a to
w causes the string g(i, a, f(w)) to be concatenated to ui.

The two “factors” case is illustrative.

Input:w → g

(
Input:w1 → M1 → Output:x1

Input:w2 → M2 → Output:x2

)
→ h → Output:x

⇑ ⇓
⇐ ⇐========= feedback ⇐======== ⇐==

F (w) = h(f1(u1), f2(u2))

ui(Λ) = Λ

ui(wa) = ui(w) ◦ g(a, i, F (w))

Example: Stack By way of illustration consider a parallel implementation of a
stack.

Stackn(w) = (S(u1) . . . , S(un)) (1)



Recursive Automata and Products 3

where each S(za) = a so that the n factors are are simple storage cells. Let’s
have a special value so we can spot empty cells S(Λ) = EMPTY and have
some a = EMPTY in the storage cell alphabet. The alphabet of the stack is
PUSH[v] : v ∈ Astorage and POP . Then define the ui

ui(Λ) = Λ (2)

ui(wa) = ui(w) ◦


⟨v⟩ if i = 1 and a = PUSH[v]
⟨EMPTY ⟩ if i = n and a = POP
⟨S(ui−1(w))⟩ if i > 1 and a = PUSH[v]
⟨S(ui+1(w))⟩ if i < n and a = POP

(3)

Then define Top(w) = S(u1) and

Empty(w) =

{
1 if S(u1) = EMPTY
0 otherwise.

and

Full(w) =

{
1 if S(un) ̸= EMPTY
0 otherwise.

Example: Network A computer on a network might, from the outside, appear to
have an alphabet consisting of RECV [m], TRANSMIT [m], for m in a set of
possible messages and TICK to indicate passage of time. Say D is a networked
computer if D(w) ∈ {(m, c) : m ∈ Messages ∪ {NULL}, c ∈ {ready, busy})}
where D(w) = (x, y) tells us that D is trying to send message x (or not sending
any message if x = NULL) and that D is or is not ready to accept a message.
For simplicity assume a broadcast network and then define

N(w) = (D1(u1) . . . , Dn(un), R(v))

where each Di is a network node and R is an arbiter we can define to pick which,
if any, node gets to send a message next. Each Di may be distinct as long as it
satisfies the specifications of output values.

R(z) ∈ {1 . . . n}

The alphabet of N can just consist of the single symbol TICK. Let ui(wa) =
ui(w)◦⟨RECV [m], T ICK⟩ ifR(v(w)) = j andDj(uj(w)) = (m, c) andDi(ui(w)) =
(k, ready). Otherwise, just append TICK to ui.

If Dj is itself a product, say Dj(w) = (OS(ros), APP (rapp) then if w is the
string parameter to N , we can look inside at the value of OS(ros(ui(w))).

Outline In what follows, the correspondence between string functions and trans-
ducers is made precise, the correspondence between the simultaneous recursion
scheme given above to a ”general product” of automata is proven and some im-
plications are drawn for the study of automata structure and algebraic automata
theory. Companion technical reports describe practical use.



4 Yodaiken

2 Basics

A Moore machine or transducer is usually given by a 6-tuple

M = (A,X, S, start , δ, γ)

where A is the alphabet, X is a set of outputs, S is a set of states, start ∈ S is
the initial state, δ : S × A → S is the transition function and γ : S → Xis the
output function.

Given M , use primitive recursion on sequences to extend the transition func-
tion δ to A∗ by:

δ∗(s, Λ) = s and δ∗(s, wa) = δ(δ∗(s, w), a). (4)

So γ(δ∗(start , w)) is the output of M in the state reached by following w
from M ’s initial state. Call fM (w) = γ(δ∗(start , w)) the representing function
of M . It’s easy to go from f : A∗ → X to f∗ : A∗ → X∗, but that does not suit
the purposes of this work.

If fM is the representing function of M , then f ′(w) = g(f(w)) represents M ′

obtained by replacing γ with γ′(s) = g(γ(s)). The state set of M and transition
map remain unchanged.

The transformation from string function to transducer is also simple. Given
f : A∗ → X define fw(u) = f(w ◦ u). Let Sf = {fw : w ∈ A∗}. Say f is finite if
and only if Sf is finite. Define δf (fw, a) = fwa and define γ(fw) = fw(Λ) = f(w).
Then with startf = fΛ we have a Moore machine

M(f) = {Sf , startf , δf , γf}

and, by construction f is the representing function for M(f).
A similar construction can be used to produce a monoid from a string function

as discussed below in section 3.1.
Any M2 that has f as a representing function can differ from M1 = M(f)

only in names of states and by including unreachable and/or duplicative states.
That is, there may be some w so that δ∗1(start1, w) ̸= δ∗2(start2, w) but since
fw = fw it must be the case that the states are identical in output and in the
output of any states reachable from them. If we are using Moore machines to
represent the behavior of digital systems, these differences are not particularly
interesting and we can treat M(f) as the Moore machine represented by f .

While finite string functions are the only ones that can directly model digital
computer devices or processes1, infinite ones are often useful in describing system
properties. For example, we may want L(Λ) = 0 and L(wa) = L(w)+1 and then
seek to prove for some P that there is a t0 so that whenever L(w◦z) ≥ L(w)+ t0
there is a prefix v of z so that P (w ◦ v) = 0. In this case, L is an ideal measuring
device, not necessarily something we could actually build.

1 There is a lot of confusion on this subject for reasons I cannot fathom, but processes
executing on real computers are not Turing machines because real computers do
not have infinite tapes and the possibility of removeable tapes doesn’t make any
difference.



Recursive Automata and Products 5

2.1 Products

Suppose we have a collection of (not necessarily distinct) Moore machines Mi =
(Ai, Xi, Si, start i, δi, λi) for (0 < i ≤ n) that are to be connected to construct a
new machine with alphabet A using a connection map g. The intuition is that
when an input a is applied to the system, the connection map computes a string
of inputs for Mi from the input a and the outputs of the factors (feedback).
The general product here is described by Gcseg [2]. I have made the connection
maps generate strings instead of single events so that the factors can run at
non-uniform rates. If g(i, a,x) = Λ, then Mi skips a turn.

Definition 21 General product of automata
Given Mi = (Ai, Xi, Si, start i, δi, γi) and h and g define the Moore machine:
M = An

i=1[Mi, g, h] = (A,X, S, start , δ, γ)

– S = {(s1 . . . , sn) : si ∈ Xi} and start = (start1 . . . , startn)
– X = {h(x1 . . . , xn) : xi ∈ Xi} and γ((s1 . . . , sn)) = h(γ1(s1) . . . , γn(sn)).
– δ((s1 . . . , sn), a) = (δ∗1(s1, g(1, a, γ(s))) . . . , δ

∗
n(sn, g(n, a, γ(s)))).

One thing to note is that the general product, in fact any product of au-
tomata, is likely to produce a state set that contains unreachable states. The
string function created by simultaneous recursion represents the minimized state
machine as well. The possible “blow up” of unreachable and duplicate states is
not a problem for composite recursion.

Theorem 1 If each fi represents Mi and f(w) = h(f1(u1) . . . , fn(un))
and ui(Λ) = Λ
and ui(wa) = ui(w) ◦ g(i, a, f(w))
and M = An

i=1[Mi, h, g] then f represents M

Proof: Each fi represents Mi so

fi(z) = γi(δ
∗
i (start i, z)) (5)

But γ(δ∗(start , w)) = h(γ(s)) = h(. . . γi(δ
∗
i (start i, wi)) . . .) for some wi. All we

have to show is that

δ∗(start , w) = (. . . δ∗i (start i, ui(w)) . . .) (6)

and then we have

γ(δ∗(start , w)) = h(. . . γi(δ
∗
i (start i, ui(w))) . . .).

It follows immediately that

γ(δ∗(start , w)) = h(. . . fi(ui(w))) . . .) = f(w)

Equation 6 can be proved by induction on w. Since ui(Λ) = Λ the base case is
obvious. Now suppose that equation 6 is correct for w and consider wa.



6 Yodaiken

Let δ(start , w) = s = (s1 . . . , sn) and let ui(w) = zi. Then, by the induc-
tion hypothesis si = δ∗i (start i, zi), and, by the argument above γ(δ∗(start , w)) =
f(w). So:

δ∗(start , wa) = δ(δ∗(start , w), a) (7)

= δ(s, a) (8)

= (. . . δ∗i (si, g(i, a, γ(s))) . . .) (9)

= (. . . δ∗i (δ
∗
i (start , ui(w)), g(i, a, f(w))) . . .) (10)

= (. . . δ∗i (start , ui(w) ◦ g(i, a, f(w))) . . .) (11)

= (. . . δ∗i (start , ui(wa)) . . .) (12)

proving 6 for wa.
It follows directly that if M is represented by f , and f is defined by simulta-

neous recursion, then f can also be defined by single recursion — although such
a definition may be impractical because of the large state set size.

3 More on Representation and Some Algebra

A number of results follow from theorem 1.

Theorem 2 For M and f constructed as products as above in theorem 1.

– There are an infinite number of distinct products M ′ = Ak
i=1[Ni, gi] so that

f represents M ′ as well as M .
– If all of the Mi are finite state, M is finite state (by construction).
– If all of the fi are finite state, f is finite state ( since it represents a finite

state Moore machine).
– If f is finite state then there is some M ′ = Ak

i=1r[Zi, g, h] where f represents
M ′ and each Zi is a 2 state Moore machine. In fact k = ⌈log2(|SM ′ |)⌉. This
is simple binary encoding.

3.1 Monoids

If f : A∗ → X then say w ≡f u iff f(z ◦ w ◦ y) = f(z ◦ u ◦ y) for all z, y ∈ A∗.
Let [w]/f = {u ∈ A∗, u ≡ w}. Then define [w]/f · [z]/f = [w ◦ z]/f . The set
of these classes with · comprises a monoid where [w]/f · [Λ]/f = [w]/f for the
required identity. Say that this monoid is the monoid determined by f . Recall
the construction of states from string functions above and the set Sf consisting
of all the functions fw so that fw(z) = f(w ◦ z). Note that if v, z ∈ [w]/f it must
be the case that for any string r fr◦z = fr◦v. So it is possible to associate each
[w]/f with a map from Sf → Sf where fr 7→ fr◦z for any z in [w]/f . As a result,
whenever Sf is finite, there are only a finite number of maps Sf → Sf so the
monoid determined by f must also be finite.



Recursive Automata and Products 7

Suppose f(w) = h(f1(u1) . . . , fn(un)) so that ui(wa) = ui(w) ◦ zi where zi
only depends on the feedback from factors indexed by j < i. That is, there are
r1 . . . rn so that z1 = r1(a) and zi+1 = ri+1(a, f(w, 1) . . . , f(w, i)). In this case f
is constructed in cascade where information flows only in one direction and the
results of Krohn-Rhodes theory[4, 3] will apply.

If f is finite and represents a state machine with k states and each of the fi
are finite with ki states in the represented state machine, then if Σj≤n

j=1 kj < k the
factorization is an implementation of f by essentially simpler string functions —
and it corresponds to a factorization of the monoid of f into simpler monoids.

Let Tn(Λ) = 0 and Tn(wa) = T (w) + 1 mod n. Now define Gn as a cascade
of T2’s as follows:

Gn(w) = (T2(u1) . . . , T2(un)) (13)

u1(wa) = u1(w) ◦ ⟨a⟩ = wa (14)

ui+1(wa) = ui+1(w) ◦
{
Λ if ∃j < i, T2(uj(w)) = 0
⟨a⟩ otherwise (15)

This is called a “ripple carry adder” in digital circuit engineering: each counter
increments only if the “carry” is propagating through all lower order counters.
Put Hn(w) = Σi≤n

i=1 T2(ui) × 2i−1 where the ui are as defined for Gn. Then
Hn = T2n and you cannot make a Gn which counts mod any number other then
2n. Otherwise, the underlying monoid of Tk has a simple group factor (a prime
cyclic group) and those cannot be factored into smaller elements without some
feedback.

While the cascade decompositions may simplify the interconnect in one way,
they do not necessarily indicate the most efficient or interesting decomposition
in practice. Cascades are good designs for ”pipelined” execution but may be slow
if we have to wait for the data to propagate to the terminal element. And group
qualities in data structures can correspond to ”undo” properties. For example,
consider a circular buffer - like those commonly used for UNIX type fifos/pipes.
The idea is that ”write” operations push data into the pipe and ”read” operations
remove data in order of the ”writes”. The memory used to hold the data is
allocated in a cycle. One way to implement such a buffer is to decompose it into
an array of k memory locations and a mod k counter. A write operation causes
an increment of the counter and a store of data in the appropriate memory
location. The increment has an inverse, the write does not. But the result is
that a write can be “forgotten”. Perhaps factoring off group-like components
will reveal other possibilities for this type of partial inverse.

References

1. Michael A. Arbib. Theories of Abstract Automata. Prentice-Hall, 1969.
2. Ferenc Gecseg. Products of Automata. Monographs in Theoretical Computer Sci-

ence. Springer Verlag, 1986.
3. A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.
4. W.M.L. Holcombe. Algebraic Automata Theory. Cambridge University Press, 1983.



8 Yodaiken

5. E.F. Moore, editor. Sequential Machines: Selected Papers. Addison-Welsey, Reading
MA, 1964.


