
Primitive Recursion and state machines

Victor Yodaiken
Copyright .*

yodaiken@finitestateresearch.com

July , 

 Introduction
In this note, I look at how primitive recursion and feedback relate, how to repre-
sent statemachines as primitive recursive functions, and at a particularly powerful
machine product in terms of primitive recursive composition. Although the rela-
tionship between maps on sequences and state machines was described by Myhill
and Nerode in the late s [Arb], the relationships between primitive recur-
sion and state transition and between recursive composition and machine prod-
ucts has not been well studied. Sequence functions offer a concise, scalable, and
mathematically convenient alternative to the traditional set-of-states presentation
of automata for describing the complex state systems encountered in computer en-
gineering. e recursive composition described here offers a means of factoring
designs and of constructing specifications compositionally. While computer sci-
entists have resorted to many exotic mathematical objects in an effort to evade the
perceived limits of state machines, many of those limitations can be removed by
using the sequence function presentation.

Section  reviews Moore machines and maps on sequences. e net section
describes the ``general product" and some results about recursion and products.
e last section looks at relationships between recursion and algebraic view of state
machines[Gin].

 Basics
AMoore machine or transducer is usually given by a -tuple

M = (A,X, S, start, δ, γ)

where A is the alphabet, X is a set of outputs, S is a set of states, start ∈ S is the
initial state, δ : S ×A → S is the transition function and γ : S → Xis the output
function.

Let wa be the sequence obtained by appending a ∈ A to sequence w and let λ
be the empty sequence. e set A∗ contains all finite sequences over A including

*Permission granted to make and distribute complete copies for non-commercial use but not
for use in a publication. All other rights reserved but fair use encouraged as long as properly cited.



yodaiken@finitestateresearch.com

λ. Given M , extend the transition function δ to A∗ by:

δ∗(s, λ) = s and δ∗(s, wa) = δ(δ∗(s, w), a).

So γ(δ∗(start, w)) is the output ofM in the state reached by followingw fromM 's
initial state. Call fM(w) = γ(δ∗(start, w)) the representing function of M .

e representing function captures the behavior of a Moore machine and, as
shown below, all the interesting information about the Moore machine from a
certain perspective. As we'll see below, for every map f : A∗ → X there is a way
to construct both a ``canonical"Mooremachine represented by f and themonoid
of that Moore machine.

- -0 or 1 valueShi Register
Although Moore machines are usually limited to finite state sets and, in fact,

finite Moore machines are the ones that correspond to digital computer systems
and processes, this work contemplates both finite and infinite Moore machines.
For example, an unbounded counter

C(λ) = 0 and C(wa) = 1 + C(w)

represents an infinite state machine but may be useful in specifying how a finite
state machine operates. Say that f : A∗ → X is finite state if and only if f is the
representing function of a finite state Moore machine. Given an alphabet A =
{0, 1} a bounded ``shi-register" can be defined recursively as follows:

Rn(λ) = 0
Rn(wa) = 2Rn(w) mod 2n + a

Or we could expand the alphabet to A = {0, 1, reset} and define

R′
n(wa) =

{
(2Rn(w) mod 2n + a) if a ∈ {0, 1}
0 if a = reset;

Both Rn and R′
n are obviously finite state.

A bounded queue can be defined to ignore pushes when it is full. If A =
{pop} ∪ {push[v] : v ∈ V } define Qn(λ) = () and

Qn(wa) =



() if Qn(w) = (v) and a = pop
(v1..., vj−1) if Qn(w) = (v1...vj) for some j > 1;

and a = pop;
(v1..., vj, v) if Qn(w) = (v1...vj) for some j < n;

and a = push[v];
Qn(w) otherwise;

If f representsM , then f ′(w) = g(f(w)) representsM ′ obtained by replacing
γ with γ′(s) = g(γ(s)). e state set ofM and transitionmap remain unchanged.
For example,En(w) = Rn(w)/2n−1 hides the interior state ofRn andonly outputs
the highest order bit.

Composing these elements into complex systems and factoring them into sim-
pler elements is the subject of the next section.



 Products
e product, which Gécseg calls a ``general product" [G�]¹ connects the fac-
tor state machines so that the input to each factor is a function of the input to
the composite machine and the outputs of some or all of the factors (this is the
``feedback"). Pictorially, the Gécseg product is straightforward: n machines are
connected via n maps that determine communication among the machines.

-

?�

- -

-- -

-- -

6
M1

M2

Mn

h1

h2

h3

Feedback

-Input to product

Suppose we have a collection of (not necessarily distinct) Moore machines
Mi = (Ai, Xi, Si, starti, δi, λi)(0 < i ≤ n) that are to be connected to con-
struct a new machine with alphabet A. e intuition is that when an input a is
applied to the system, the connection map computes a sequence of inputs for Mi

from the input a and the outputs of the factors (feedback). I have made the con-
nection maps generate sequences instead of single events so that the factors can
run at non-uniform rates. If hi(x⃗, a) = λ, then Mi skips a turn.

. Deĕnitions of the product
e sequence product composition is based on recursive concatenation of se-
quences to construct a sequence for each factor from the product sequence. Use
◦ to indicate concatenation so that if w = ⟨a1..., an⟩ and u = ⟨b1..., bk⟩ we have
w ◦ u = ⟨a1..., an, b1..., bk⟩.Note that w ◦ λ = λ ◦ w = w.

Deĕnition . General product of sequence functions

f = Fn
i=1[fi, hi]

defines:
f(w) = (f1(h

∗
1(w))...fn(h∗

n(w)))

where h∗
i (λ) = λ and h∗

i (wa) = h∗
i (w) ◦ hi(f(w), a) .

is definition scheme is equivalent to the automata product.

Deĕnition . General product of automata
Given Mi = (Ai, Xi, Si, starti, δi, γi) and hi : Πn

i=1Xn × A → A∗
i for 0 < i ≤ n

¹ I'm using a slight modification.


define the Moore machine:

M = An
i=1[Mi, hi] = (A,X, S, start, δ, γ)

so that:

• S = Πn
i=1Si

• start = (start1...startn)

• X = {(x1..., xn) : xi ∈ Xi}.

• If s = (s1..., sn), then γ(s) = (γ1(s1)...γn(sn)).

• If s = (s1..., sn), then δ(s, a) = (δ∗1(s1, h1(γ(s), a))...δ∗n(sn, hn(γ(s), a))).

eorem . If each fi represents Mi and f = Fn
i=1[fi, hi] and M = An

i=1[Mi, hi]
then f represents M

Before going through the proof, some examplesmay help clarify how the prod-
uct works.

. Example of a shi register
e shi register defined above can be constructed as a product of simpler ma-
chines.

Consider a single bit store machine over an alphabet A = {0, 1}.

B(λ) = 0 and B(wb) = b

Define G = Fn
i=1[Bi, hi] where hi is to be given below. Note that G(w) =

(b1..., bn) where bi = Bi(h
∗
i (w)). For any x⃗ = (b1..., bn) write x⃗i = bi to index

the elements. e connection maps are written so that input b is given directly to
factor 1 and ignored for all higher index factors where the input is determined by
the output of the adjacent factor.

h1(x⃗, b) = ⟨b⟩ and for 1 < i ≤ n, hi(x⃗, b) = ⟨x⃗i−1⟩.

To see how the product works: G(wb)1 = b since h1(x, b) = ⟨b⟩ and so if z =
h∗

1(w) then G(wb)i = Bi(z ◦ ⟨b⟩) = b. If G(w) = (b1..., bn) then for i > 1
hi(G(w), b) = ⟨bi−1⟩. So for i > 1, G(wb)i = Bi(z ◦ ⟨bi−1⟩) = bi−1.

Define G′(w) = Σn
i=12

i−1 ∗ G(w)i G′(λ) = 0. Suppose G′(w) = Rn(w).
en consider G′(wb) which is equal to b + Σn

i=2b2
i ∗G(wb)i−1 = 2 ∗G′(w) + b.

So G′(w) = Rn(w).
Note that the obvious realization of Rn is a state machine with 2n states where

γ(x) = x and δ(x, b) = 2 ∗ x mod 2n + b. But G replaces that with n -state state
machines: 2n reduced to 2n and G′ just modifies the output map.

- - --

Construction of a queue of bitsQn from copies ofB and a bounded counter is
also straightforward. Here's the counter- note it has a different alphabet so we are
dealing here with the queue alphabet of the product, the alphabet of the counter
and the bit store alphabet. Let Cn(λ) = 0 and Cn(wa) = min(n, 1 + Cn(w)) if



a = increment and Cn(wa) = max(0, Cn(w) − 1) if a = decrement. Define
f1...fn+1 so that f1...fn are copies of B and fn+1 is a copy of Cn.

Vn = Fn+1
i=1 [fi, hi]

hi(q⃗, a) =



⟨v⟩ if i = 1 and a = push[v] and q⃗ < n
⟨q⃗i−1⟩ if 1 < i ≤ n and a = push[v] and q⃗ < n
⟨increment⟩ if i = n + 1 and a = push[v] and q⃗ < n
λ if i = n and a = pop
⟨q⃗i+1⟩ if i < n and a = pop
⟨decrement⟩ if i = n + 1 and a = pop

Now put Size(w) = Vn(w)n+1 and define NQ(w) = () if Size(w) = 0 and
NQ(w) = (Vn(w)1...Vn(w)Size(w)) otherwise.

. Proof of the product theorem and some results
Each fi represents Mi so fi(z) = γi(δ

∗
i (starti, z)). We prove the stronger asser-

tion:

(A) f(w) = γ(δ∗(start, w)) and δ∗(start, w) = (...δ∗i (starti, h
∗
i (w))...)

For λ, h∗
i (λ) = λ so δ∗(start, λ) = (...δ∗i (starti, λ)...) is obviously correct.

And we have f(λ) = (...fi(λ)...) = γ(δ∗(start, λ)).
Now suppose (A) holds for w and consider wa.
h∗

i (wa) = h∗
i (w) ◦ hi(x⃗, a) where x⃗ = f(w) = (...fi(h

∗
i (w)...). Note that

δ∗(start, wa) = δ(δ∗(start, w), a).
Let s = (s1, ...sn) = δ∗(start, w). en δ(s, a) = (...δ∗i (si, hi(x⃗, a))...) where
x⃗ = f(w) by the recursive hypothesis.
It follows that: δi(si, hi(x⃗, a)) = δ∗i (δ

∗
i (starti, h∗

i (w)), hi(x⃗, a)) = δ∗i (starti, h∗
i (w)·

hi(f(w), a)) = δ∗i (starti, h∗
i (wa)) as claimed.

A number of results follow.

eorem . For M and f as above.

• ere are an infinite number of distinct products M ′ = Fk
i=1[Ni, gi] so that f

represents M ′ as well as M .

• If all of the Mi are finite state, M is finite state (by construction).

• If all of the fi are finite state, f is finite state (since it represents a finite state
Moore machine).

• If f is finite state then there is some M ′ = Fk
i=1r[Zi, gi] where f represents

M ′ and each Zi is a  state Moore machine. In fact k = ⌈log2(|SM ′ |)⌉. is
is simple binary encoding.

eorem . If g has a finite image and each fi is finite state and F (λ) = x0 and:
F (wa) = g((F (w), f1(w), ...fn(w)), a)
then F is finite state

Proof. LetX be the image of g and define T (λ) = x0 and T (wx) = x. Clearly,
T is finite state if its alphabet is restricted to X . Define E =

∏n+1
i=1 [f ′

i , hi] so that
f ′

i = fi for i ≤ n and fn+1 = T . Let hn+1(y⃗, a) = g(y⃗, a) and let hi(y⃗, a) = ⟨a⟩
for i < n+1. SinceE(w)n+1 = F (w) andE must be finite state the result follows.

 Algebraic view

. e le equivalence
Nerode showed that there is a construction of a Moore machineM(f) from any
f : A∗ → X via a le equivalence relation. Given f , say w ∼f u if and only if
f(wz) = f(uz) for all z ∈ A∗. e relation ∼f is readily seen to be an equiva-
lence relation. e set A∗ is partitioned by ∼f into disjoint classes of equivalent
sequences: [w]f = {u : u ∼f w, u ∈ A∗}. e set of these equivalence classes
A∗/ ∼f= {[u]f : u ∈ A∗} can be the state set of M(f) and the transition and
output functions are given by δf ([w]f , a) = [wa]f and γf ([w]f) = f(w).

M(f) = {A, X,A∗/ ∼f , [λ]f , δf , γf}.

Since f(w) = γf (δ
∗
f ([λ]f , w) by definition f is the representing function ofM(f).

f is finite state if and only ifM(f) is finite state. In fact, it is easy to show that
any M ′ that has f as a representing function can differ fromM(f) only in names
of states and by including unreachable and/or duplicative states (if γ(δ∗(s, w)) =
γ(δ∗(s′, w)) for all w, then s and s′ are duplicative). If we are using Moore ma-
chines to represent the behavior of digital systems, these differences are not par-
ticularly interesting and we can treatM(f) as theMoore machine represented by
f .

. Monoids
If f : A∗ → X then say w ≡f u iff f(zwy) = f(zuy) for all z, y ∈ A∗. en
A∗/ ≡f is a monoid under the operation of concatenation of representative ele-
ments. Let [w]/f = {u ∈ A∗, u ≡ w}. en define [w]/f · [z]/f = [wz]/f . e
set of these classes with · is a monoid where [w]/f · [λ]/f = [w]/f for the required
identity.

Suppose f = Fk
i [fi, hi] where each hi only depends on the feedback from

factors indexed by j < i. at is, there are g1...gn so that h1(x, a) = g1(a) and
for each i > 1, we have hi((x1...xn), a) = gi((x1...xi−1), a). So f is constructed
in cascade where information flows only in one direction. e functionG defined
above is an example of such a system. In this case the results of Krohn-Rhodes
theory[Hol, Gin] will apply: and Rn can be reduced to a cascade product of
flip-flops because the monoid induced by≡Rn is ``group free".

Consider Dn where Dn(λ) = 0 and Dn(wa) = Dn(w) + 1 mod n. For D8

there is an easy factorization into the D2's. Let Zi = C2 so we don't run into
indexing conflicts, let h1(x, a) = ⟨a⟩ and let hi(x, a) = λ if Πn

j=1xi−1 = 0 and
hi(x, a) = ⟨a⟩ otherwise. is is called a ``ripple carry adder" in digital circuit
engineering: each counter increments only if the ``carry" is propagating through
all lower order counters. en Gn = Fn

i [Zi, hi] and works as a mod n counter
only when n is a power of . Otherwise, the underlying group of Dn has simple
group factors and those cannot be factored into smaller elements without some
feedback.

References
[Arb] Michael A. Arbib. Algebraic theory of machines, languages, and semi-

groups. Academic Press, . 

[G�] Ferenc Gécseg. Products of Automata. Monographs ineoretical Com-
puter Science. Springer Verlag, .

[Gin] A. Ginzburg. Algebraic theory of automata. Academic Press, .

[Hol] W.M.L. Holcombe. Algebraic Automata eory. Cambridge University
Press, .



