
A Linux�based Real�Time Operating System

by

Michael Barabanov

Submitted in Partial Ful�llment

of the Requirements for the Degree of

Master of Science

in Computer Science

New Mexico Institute of Mining and Technology

Socorro� New Mexico

June �� ����

Abstract

This work describes the design� implementation� and possible applications of Real�Time

Linux � a hard real�time version of the Linux operating system� In this system� a standard

time�sharing OS and a real�time executive run on the same computer� Interrupt controller

emulation is used to guarantee a low maximum interrupt latency independently of the base

system� The use of a one�shot timer makes it possible to achieve a low task release jitter

without compromising throughput� Lock�free FIFO bu�ers are employed for communication

between real�time tasks and Linux processes� User�de�ned schedulers are allowed as are

run�time changes in the scheduling policy�

The system is in active use for real�time data acquisition� control� and communications�

The software is free and can be obtained by FTP at luz�cs�nmt�edu��pub�rtlinux or

via the WWW at http���luz�cs�nmt�edu��rtlinux�

Acknowledgements

I would like to express my deep appreciation to my advisor� Victor Yodaiken� for his sup�

port� encouragement� and friendship� His original ideas� comments and suggestions were

invaluable� His help was essential in bringing this thesis to completion� I also wish to thank

Victor for his patience in answering my numerous questions�

I thank other members of my committee� Dr� Lassez and Dr� Mazumdar� for their time

and e�ort in reviewing my thesis� I found Dr� Lassez�s comments on my presentation style

to be immensely helpful� I am grateful to Dr� Mazumdar for encouraging me to perform

more substantial testing of the system�

Thanks to Yuri G� Karpov� my academic advisor in Russia� for giving me an opportunity

to study in the US and helping me deal with many important matters�

Last� but not least� I would like to thank Olga Tomina for her patience and under�

standing� and my parents� Alexander and Irina� for everything good they have done for

me�

ii

Table of Contents

� Introduction �

	�	 Real�Time Systems � 	

	�
 Problem Statement and Motivation �

	�� Organization �

� Related Work �

�	 Time�Sharing Nature of UNIX �

�
 Existing Real�Time Operating Systems �

� Design and Implementation ��

��	 Interrupt Emulation � 		

��
 Real�Time Tasks � 	�

��� Scheduling � 	�

��� Timing � 	

��� Interprocess Communication � 	�

� Applications ��

��	 Application Structure � 	�

��
 PC Speaker Driver � 	�

��� Real World Applications �
	

� Experimental Results ��

iii

� Future Directions ��

Bibliography ��

A Real	Time Task Interface ��

A�	 Task Control �	

A�
 Real�Time FIFOs �

A�� Interrupts ��

B The PC Speaker Driver Code ��

iv

List of Figures

�	 A Naive Sound�Generating Program �

��	 Soft CLI and STI � 	

��
 Soft IRET � 	�

��	 Data Flow in an Application �
�

��	 Measuring Interrupt Latency �
�

v

List of Abbreviations

API Application Program Interface

CPU Central Processor Unit

DMA Direct Memory Access

EDF Earliest Deadline First

ELF Executable and Linkable Format

FIFO First�In�First�Out

FP Floating Point

GUI Graphical User Interface

I
O Input�Output

IPC Interprocess Communication

OS Operating System

PC Personal Computer

RAM Random�Access Memory

ROM Read�Only Memory

RT Real Time

TLB Translation Lookaside Bu�er

vi

Chapter �

Introduction

��� Real�Time Systems

A real�time computer system can be de�ned as a system that performs its functions and

responds to external� asynchronous events within a speci�ed amount of time ���� Most

control and data acquisition applications� for example� fall into this category� A real�time

operating system is an operating system capable of guaranteeing timing requirements of the

processes under its control�

While time�sharing OS like UNIX strive to provide good average performance� for a

real�time OS correct timing is the key feature� Throughput is of secondary concern�

There are hard and soft real�time systems ���� Soft real�time systems are those in which

timing requirements are statistically de�ned� An example can be a video conferencing

system� it is desirable that frames are not skipped� but it is acceptable if a frame or two

is occasionally missed� In a hard real�time system� the deadlines must be guaranteed�

For example� if during a rocket engine test this engine begins to overheat� the shutdown

procedure must be completed in time�

While it is possible �and even sometimes preferable� to implement real�time systems

without any kind of operating system� doing so is usually not very convenient� nor is it

easy� In this work we will only discuss real�time with respect to operating systems� focusing

	

on UNIX�like OSs�

��� Problem Statement and Motivation

There are numerous real�time operating systems available today� What was missing� how�

ever� is an open� standard� supported� e�cient� and inexpensive multitasking system with

hard real�time capabilities� Many UNIX systems meet the �rst three requirements� Linux ��

a relatively recent free UNIX�like OS� originated by Linus Torvalds� features excellent sta�

bility� e�ciency� source code availability� not restrictive license� and substantial user base�

Source code availability is essential for veri�cation of the system correctness� adaptation to

speci�c problems� and mere bug �xing�

Linux can run on the most widely available computers� IBM PCs and compatible ma�

chines �most PC hardware is supported�� Since many computer and engineering labs have

computers of this type� it is possible for them to use Linux without any further investment�

Linux has all features of a modern UNIX system� several X Window System implemen�

tations� graphical user interface toolkits� networking� databases� programming languages�

debuggers� and a variety of applications� It is embeddable and is able to perform e��

ciently using relatively small amounts of RAM and other computer resources �the Sunrayce

project software that I will describe in Chapter � utilizes these properties of Linux�� In

short� Linux has the potential to make an excellent development platform for a wide variety

of applications� including those involving real�time processing�

However� Linux has several problems preventing it from being used as a hard real�time

OS� most notably the fact that interrupts are often disabled during the course of execution of

the kernel� Other problems include time�sharing scheduling� virtual memory system timing

unpredictability� and lack of high�granularity timers�

It turns out that using software interrupts �
��� together with several other techniques� it

is nevertheless possible to modify Linux so as to overcome these problems� The idea to use

software interrupts so that a general�purpose operating system could coexist with a hard

�http���www�linux�org�

�

real�time system is due to Victor Yodaiken �personal communications�� This thesis details

how this idea and several others were applied to build a hard real�time version of Linux�

��� Organization

The thesis is structured as follows� Chapter
 describes related research in the area of

real�time UNIX systems� Chapter � details the design and implementation of Real�Time

Linux� Chapter � contains a discussion of the application model of Real�Time Linux� I

also describe several existing applications� The measurements results of Real�Time Linux

performance can be found in Chapter �� Finally� Chapter � summarizes the results of this

work and outlines possible directions of future research�

Chapter �

Related Work

Despite the recent proliferation of various operating systems� UNIX and compatibles are still

standard in the industry and academia� Some non�UNIX systems� for example Windows

NT� have limited compliance with POSIX�	��� �	��� a standard clearly based on UNIX� The

success of this system is partly due to the fact that it is open� mature� and standard� With

the advent of POSIX�	����	b real�time extensions� UNIX has a chance to become the most

widespread platform for real�time processing�

Because of these reasons� in this chapter I will focus on real�time systems that have

some relation to UNIX� I will describe problems with real�time computing on UNIX� and

how these problems have been addressed in several systems�

��� Time�Sharing Nature of UNIX

UNIX was originally designed as a time�sharing system �
��� Most modern implementations

retain this nature� They strive to optimize average performance� This goal is often at odds

with low latency and high predictability requirements of real�time systems� To illustrate

this let us consider a program to play a note through the speaker �Figure
�	��

The speaker driver is assumed to have only two states� on and o�� At �rst sight

this program might seem like a legitimate way to make the speaker reproduce the sound

�

�

�define DELAY �����

main�	

int i�

while ��	

for �i � �� i DELAY� i��	�

speaker�on�	�

for �i � �� i DELAY� i��	�

speaker�off�	�

�

�

Figure
�	� A Naive Sound�Generating Program

corresponding to a square wave with a given period� However� when run as a standard

UNIX process� it will not work properly�

I ran this program under the Linux operating system on a PC with a 	
� MHz Pentium

processor� When there was no other noticeable activity in the system� the speaker was

producing a somewhat steady tone� The tone was not completely steady� however� Every

now and again clicks could be heard� Each key press or a mouse move caused the tone to

momentarily change� In the presence of disk accesses or CPU�intensive processes the sound

was badly distorted� Finally� start of a program with a large binary image� such as an X

Window System server� caused intervals of silence lasting for up to half a second� If this

program was to control a stepper motor instead of a speaker� it would not be able to make

it run steadily�

Several design and implementation elements of Linux� and UNIX in general� contribute

to this behavior� The main factors are time�sharing scheduling� low timer resolution� kernel

non�preemptability� disabling interrupts� and virtual memory� Let us consider these factors

in detail�

Scheduling is a set of policies and mechanisms built into the operating system that

govern the order in which the work to be done by a computer system is completed �	���

Most UNIX operating systems� Linux in particular� have schedulers that are intended to

balance response time and throughput and to ensure fair distribution of CPU time among

�

processes �	��� Each process has a varying priority that depends on the amount of CPU

time the process has spent� input�output intensity� and other factors�

UNIX systems typically schedule CPU time using �xed time slices� Initially a process

is given a high priority� If during its time slice a process gives up the CPU� the priority

of this process remains the same� or becomes higher� On the other hand� if a process uses

up its time slice completely� its priority is lowered� This policy favors interactive programs�

e� g� editors� since these programs spend most of their execution time waiting for I�O to

complete� While convenient for a user at a terminal� such scheduling is next to useless

for real�time processing because the execution of any process depends in a complex and

unpredictable fashion on system load and the behavior of other processes�

Another problem is the timer resolution� Historically only 	 second resolution alarm

signals and the sleep�	 system call were provided to user processes� Such crude timing

is not su�cient for most kinds of real�time processing� Modern versions provide means to

specify intervals with higher precision� however� internal clock implementations often limit

the actual timing accuracy� I will talk more about the issue of timer resolution in Chapter ��

In most UNIX systems processes running in kernel mode can not be preempted �	���

In other words� once a process has entered the kernel it will run until the system call is

complete or until it blocks� If a higher�priority real�time process becomes ready in the

meanwhile� it will have to wait� This design simpli�es the task of kernel developers because

for the most part the kernel does not have to be reentrant� However� a system call can take

a long time to complete� and for a real�time process long delays can be unacceptable�

Closely related to the kernel non�preemptability is the problem of synchronization� To

protect data that may be accessed asynchronously� for example in an interrupt handler�

system designers often choose to disable interrupts during critical sections� This is a simple

technique and is often more e�cient than using semaphores or spinlocks� However� disabling

interrupts compromises the system�s ability to promptly respond to external events� This

method also does not solve the synchronization problem on multiprocessor architectures�

Most UNIX systems use a virtual memory system with paging �	�� �	�� Virtual memory

makes it possible to simultaneously run programs with total size exceeding the available

RAM by keeping only the working set of each program in memory� This model works well

for time�sharing systems� For real�time systems� however� virtual memory introduces an

intolerable level of unpredictability�

Having considered these factors it is clear that traditional UNIX systems are hardly

capable of real�time processing� Some radical changes are required�

��� Existing Real�Time Operating Systems

Let us consider how designers of several operating systems have addressed �or not addressed�

the problems described in the previous section�

The simplest solutions stop on changing the standard time�sharing scheduler� An exam�

ple of such system is presented in �
��� The MINIX OS round�robin scheduler was replaced

with a priority�based scheduler� Since neither paging nor swapping is used in MINIX� if the

response time requirements are not very demanding� this approach can be acceptable�

Several systems adopt POSIX�	b�	��� standard for real�time features in UNIX ��� �	���

The standard de�nes prioritized scheduling� locking of user memory pages in memory� real�

time signals� improved IPC and timers� and a number of other features� Compliance with

this standard makes UNIX systems much more appropriate for real�time applications�

Linux partially supports the POSIX�	b standard �	��� As of May 	� 	��� functions

for the control of the scheduler and memory locking are fully implemented in Linux� and

timers are partially implemented� The problems of kernel non�preemptability� low timer

resolution� and high interrupt latency remain unresolved� Thus� POSIX�	b compatibility

only permits certain kinds of soft real�time processing in Linux�

Another example of a POSIX�	b�conforming system is QNX ���� The QNX architecture

is that of a microkernel �
��� The kernel only implements four services� process scheduling�

interprocess communication� low�level network communication� and interrupt dispatching�

All other services� such as device drivers and �lesystems� are implemented as cooperating

�

user processes� As a result the kernel is very small �about kilobytes of code� and fast�

QNX also complies with POSIX 	����	 �program interface� and POSIX 	����
 �shell and

utilities� �		� standards� This allows developers familiar with UNIX to be comfortable with

the system ���� QNX provides standard UNIX features� compilers� debuggers� X�Windows�

and TCP�IP�

The microkernel approach has a number of advantages over traditional monolithic de�

sign� Debugging user processes is easier than debugging kernel components� If user pro�

cesses are executed in separate address spaces �as in QNX�� memory management errors in

di�erent modules are isolated� Drivers can easily take advantage of multithreading if it is

provided by the underlying microkernel� Another advantage is scalability� For example� a

QNX system can be scaled down to 	��K to �t in the ROM� or expanded to a full�featured

multi�machine development environment� Porting and maintenance of a microkernel�based

system is also easier� In short� many of the problems of monolithic kernels are much less

severe in microkernel systems�

For real�time processing microkernels o�er light�weight processes� fast context switches�

and IPC� A real�time user process can preempt a device driver� which is not the case in

monolithic kernels� Another advantage is that since microkernels are very small� it is easier

to calculate worst�case timing parameters� such as interrupt latency�

A weak point of many microkernels is performance� Microkernel architecture places

heavy load on interprocess communication and context switching� Microkernels only pro�

vide simple services directly� Therefore� more system calls have to be performed in a mi�

crokernel system than in a monolithic one to accomplish the same task� Although some

researchers argue that protection level changes� context switches� and message passing can

be implemented very e�ciently �	��� it is mostly for performance reasons that monolithic

kernels are still prospering�

One example of a monolithic system is VxWorks �
�� VxWorks is a proprietary real�time

operating system geared towards host�target approach� A UNIX host is used for software

development and for running non�real�time parts of an applications� The VxWorks kernel

�

called wind runs real�time tasks on the target computer� The machines communicate using

TCP�IP networking�

While VxWorks is not compatible with UNIX� it provides some of the POSIX interface

functions� most notably those from POSIX�	b real�time extensions� Most of the VxWorks

API is� however� proprietary�

In VxWorks� the kernel and tasks run in one address space� This allows task switching to

be very fast and eliminates the need for system call traps� A run�time linker allows dynamic

loading of both tasks and system modules� This feature makes for scalability� An interactive

shell with C�like syntax can be used to examine and modify variables� evaluate expressions�

call functions� and perform simple debugging� These features encourage experimentation

and make development somewhat easier� They also make the system more fragile as errors

in one module can easily a�ect others�

The REAL�IX operating system from MODCOMP ��� is monolithic� This is a full�

featured UNIX system originated from UNIX System V and made capable of real�time

processing� The kernel is fully preemptive� This is achieved by using kernel semaphores to

provide exclusive access to resources rather than using traditional explicit sleep�wakeup

functions and disabling interrupts� The use of semaphores instead of disabling interrupts

lowers the interrupt latency and makes porting to multiprocessor machines simpler�

REAL�IX is a POSIX�	����conforming OS� This feature makes for easy porting of UNIX

applications� Besides real�time scheduling� real�time capabilities of REAL�IX include pre�

allocating memory and �le space� synchronous and asynchronous I�O� enhanced IPC and

timers� and connected interrupts� The last feature allows user processes to handle inter�

rupts�

There is currently a trend to use Windows NT for real�time processing� The main reason

is compatibility with previous Windows versions� and therefore� a multitude of available

and popular applications� There is also a desire to use one OS for everything� o�ce work�

serving� and real�time control� The use of one OS reduces costs of personnel training�

Programmers for the Win�
 API are widely available� Microsoft�s marketing may also be

	�

a factor�

As pointed out in �
��� the stock Windows NT kernel is incapable of hard real�time

processing� the Win�
 API is not designed for real�time� interrupt noti�cation can be

delayed for an unpredictable amount of time� memory preallocation is problematic� and for

embedded systems the considerable memory footprint of Windows NT can be a problem�

Several companies provide solutions for some of these problems� The system provided by

LP Elektronik GmbH� uses non�maskable interrupts �NMI� generated by a special hardware

device that contains an interrupt controller and a timer� This approach guarantees timing

independence of Windows since NMI interrupt requests are never disabled� This is used to

run a VxWorks port �LP�VxWin� on the same computer� The two systems communicate

using TCP�IP�

The INtime product of RadiSys� modi�es NT�s Hardware Abstraction Level to trap

Windows� attempts to disable interrupts or reset the clock� This is an approach similar to

that taken in Real�Time Linux� At the time of this writing the system is in beta state�

The designers of QNX chose to implement the Win�
 API on top of their POSIX�

compliant OS ��� This method has an advantage of using one API for both real�time and

non�real�time applications� The memory usage is smaller� which is important for embedded

systems� However� there is no binary compatibility�

�http���www�lp�elektronik�com�
�http���www�radisys�com�products�rtos�nt�prod�html

Chapter �

Design and Implementation

��� Interrupt Emulation

One of the problems with doing hard real�time on a standard Linux system is the fact

that the kernel uses disabling interrupts as a means of synchronization� Promiscuous use

of disabling and enabling interrupts �cli and sti machine instructions in i��� processors�

in�icts unpredictable interrupt dispatch latency� The Linux kernel is monolithic and large�

There are no protecting boundaries between parts that provide di�erent services� Many

people all over the world are involved in writing the Linux kernel� This makes it very hard

to bound the time spent with interrupts disabled� Moreover� even if such bound is once

found� it is possible that it will become incorrect when the new version of the kernel comes

out� And even if we could cope with that� the bound could be just too high for our needs�

In Real�Time Linux� this problem is solved by putting a layer of emulation software

between the Linux kernel and the interrupt controller hardware� a technique similar to that

described in �
��� but used for a di�erent purpose� In the Linux source code all occurrences

of cli� sti� and iret instructions �iret means return from interrupt� are replaced with

emulating macros� S CLI� S STI and S IRET� All hardware interrupts are caught by the

emulator� The idea of emulating cli and sti to achieve real�time performance is due to

Victor Yodaiken�

		

	

S�CLI� movl ��� SFIF

S�STI� sti

pushfl

pushl �KERNEL�CS

pushl ��f

S�IRET

��

Figure ��	� Soft CLI and STI

Where disabling interrupts would normally take place� a variable in the emulator is

reset instead� Whenever an interrupt happens� the emulator checks that variable� If it is

set �Linux has interrupts enabled�� the Linux interrupt handler is invoked immediately� If�

on the other hand� Linux interrupts are disabled� the handler is not invoked� Instead� a bit

is set in the variable that holds the information about all pending interrupts� When Linux

re�enables interrupts� the handlers of all pending interrupts are executed� We will call such

simulated interrupts soft interrupts�

Since Linux has no direct control over the interrupt controller� it does not in�uence

processing of real�time interrupts that do not pass through the emulator�

The macros for S CLI and S STI are shown in Figure ��	� The code uses the GNU

assembler conventions� The S CLI macro simply resets the variable that holds the Linux

interrupt state� The S STI macro sets up the stack as if an interrupt is being handled� and

then uses S IRET macro to emulate the return� This works because S IRET enables soft

interrupts just as the hardware iret enables real ones�

The S IRET macro �Figure ��
� is the most interesting of the three� It starts with saving

some scratch registers and initializing the data segment register to point to the kernel� The

latter is necessary to access global variables� Then the bitmask representing all unmasked

pending interrupts is scanned for a set bit� If no pending interrupt was found� the interrupt

state variable is set� and a hard return from interrupt is performed� If an interrupt was

found� a jump is made to the Linux handler� The handler�s S IRET� in turn� will jump to

the next pending interrupt handler� and so on� until no interrupts are pending�

	�

S�IRET� push �ds

pushl �eax

pushl �edx

movl �KERNEL�DS ��edx

mov �dx��ds

cli

movl SFREQ� �edx

andl SFMASK� �edx

bsfl �edx� �eax

jz �f

S�CLI

sti

jmp SFIDT���eax��	

�� movl ��� SFIF

popl �edx

popl �eax

pop �ds

iret

Figure ��
� Soft IRET

Scanning and decision taking are done atomically � otherwise� if a new interrupt occurs

between them� and the scan has not found any pending interrupts� the invocation of the

new interrupt handler will be delayed until the next S STI or S IRET�

I used chained jumps instead of invoking Linux handlers using subroutine calls because

the latter method would not fully emulate direct interrupt handling� Linux handlers examine

the stack to �nd out whether it was the user or the kernel code that was interrupted� and

make decisions based on it� Therefore� it is important to preserve the stack state�

��� Real�Time Tasks

Real�time tasks are user�de�ned programs that execute according to a speci�ed schedule

under the control of the kernel�

The initial design was to give each real�time task its own address spaces to provide

memory protection� This was done by utilizing Intel ��x�� processors� built�in paging

mechanism �	��� On each context switch the page directory base register was changed to

	�

point to the page directory of the new task� For security reasons� tasks were executed with

the lowest priority level� Light�weight system calls were used for communication between

the real�time kernel and processes�

Each real�time task was presented to the system as an object module in the Executable

and Linkable Format �ELF� via a special Linux system call� A primitive loader brought

the code and data into the memory� allocated and initialized a task structure� and started

the main�	 function of the task� The task informed the kernel about its starting time and

period� and relinquished the CPU� From the starting time on the task was scheduled with

the speci�ed period�

The above scheme works� but the system performance is not optimal� One reason for

performance problems is that caches on ��� CPUs are virtual� Whenever the page direc�

tory base register is changed� the translation lookaside bu�er �TLB� has to be invalidated�

Since real�time context switches are frequent� TLB invalidations in�ict a severe performance

decrease�

Another source of overhead is in system calls� Protection level changes on i��� CPUs

are expensive� A trap to a more privileged level� for example� takes as long as 	 cycles to

execute� while most other instructions take less than 	� cycles�

One way to improve performance is to run all RT�tasks in one address space� By using

the kernel address space� we also eliminate the overhead of protection level changes� Linux

has a useful feature in this regard� loadable kernel modules� Kernel modules are object �les

that can be dynamically loaded into the kernel address space and linked with the kernel

code� Each module de�nes two routines� init module�	 and cleanup module�	� The

former is called when the module is loaded in the kernel� the latter � when the module is

removed� This provides an easy means to manipulate available drivers and �lesystems in

Linux�

Loadable kernel modules are used in the current version of Real�Time Linux to dynam�

ically create real�time tasks� This approach is clearly more fragile� a bug in a real�time

task can wipe out the whole system� The use of the C language aggravates this problem�

	�

Equivalence of arrays and pointers� type casts make it all too easy to write programs with

memory referencing bugs� On the other hand� since real�time tasks often control expensive

peripheral devices� it is reasonable to use the same level of caution as when programming

an OS kernel�

Running tasks in the kernel address space has several advantages� Besides eliminating

frequent TLB invalidation and protection level changes mentioned above� the approach

allows us to refer to functions and objects by names rather than descriptors� For example�

real�time tasks are represented as C structs� Each task can be given an arbitrary C identi�er

that can be used in other tasks� Dynamic linking performed during module loading resolves

symbols to addresses� so the access is very e�cient�

Task switching is also easier if all tasks run in one address space� Real�Time Linux

performs task�switching in software because hardware switches are slow on i��� CPUs� A

context switch consists of pushing all integer registers on the stack and changing the stack

pointer to point to the new task� Tasks with �oating point context are also supported�

The programming interface for real�time tasks can be found in Appendix A�

��� Scheduling

The main task of a real�time scheduler is to satisfy timing requirements of tasks� There are

many ways to express timing constraints and many scheduling policies �
�� No single policy

is appropriate for all applications�

In most real�time systems� the scheduler is a large� complex piece of code that can not be

extended in any way� The user can only modify the behavior of the scheduler by adjusting

parameters� which may not be enough� The generic scheduler code is often slow�

In contrast� Real�Time Linux allows users to write their own schedulers� They can be

implemented as loadable kernel modules� This makes it possible to easily experiment with

di�erent scheduling policies and algorithms and �nd the ones that best suit the speci�c

application� Schedulers can use the interval timer facility described in the next section�

	�

Two schedulers have been implemented so far� One of them is a priority�based preemp�

tive scheduler� The scheduling policy is as follows� Each task is assigned a unique priority�

If there are several tasks that are ready to execute� the task with the highest priority is

executed� Whenever a task becomes ready it will immediately preempt the currently exe�

cuting task if the current task has a lower priority� Each task is supposed to relinquish the

CPU voluntarily�

The scheduler directly supports periodic tasks� The period and the o�set �the starting

time� is speci�ed for each of them� An interrupt�driven �sporadic� task can be implemented

by de�ning an interrupt handler that wakes up the needed task�

For periodic tasks with deadlines equal to periods a natural way to assign priorities is

given by the rate monotonic scheduling algorithm �	�� According to this algorithm� tasks

with shorter periods get higher priorities� A set of n independent periodic tasks scheduled

by the rate monotonic algorithm is guaranteed to meet all deadlines if

C�

T�
�
C�

T�
� � � ��

Cn

Tn
� n�
��n � 	�

where Ci is the worst�case execution time of task i� and Ti is the period of task i� Sporadic

tasks can often be treated as periodic ones for priority assignment �

��

The scheduler treats Linux as the lowest priority real�time task� Thus� Linux only runs

when the real�time system has nothing to do� To this end� on switching from Linux to a

real�time task� soft interrupt state �see Section ��	� is remembered� and soft interrupts are

disabled� When switching back� soft interrupt state is restored�

The other scheduler was implemented by Ismael Ripoll�� It uses the Earliest Deadline

First �EDF� algorithm �	�� In this algorithm tasks do not have static priorities� Rather�

the task with closest deadline is always chosen to execute�

�http���bernia�disca�upv�es��iripoll

	

��� Timing

Precise timing is necessary for the correct operation of the scheduler� Execution schedules

often require task switching at speci�c moments of time� Timing inaccuracies cause de�

viations from the planned schedule� resulting in so�called task release jitter �

�� In most

applications task release jitter has an undesirable e�ect� It is important to minimize it�

One reason for low timer resolution typically found in operating systems is the use of

periodic clock interrupts� System designers have to trade o� the amount of time spent in

handling clock interrupts with timer resolution �	��� Real�time systems sometimes require

timer precision that is impossible to get with any reasonable performance using periodic

clocks�

Linux is no exception to this rule� On IBM PC compatibles it programs the hardware

timer to interrupt at a rate of about 	�� Hz� Thus� tasks can be released with only 	�

milliseconds precision� Most commercial real�time OS such as VxWorks and REAL�IX also

use periodic clock interrupts� although some of them allow the user to change interrupt

frequency �
��

In Real�Time Linux� I avoid this tradeo� by using a programmable interval timer to

interrupt the CPU only when needed� Speci�cally� I put the Intel ���� timer chip present

in some form in all IBM PC compatible computers into the interrupt�on�terminal�count

mode� Using this mode� an interrupt can be scheduled with approximately 	 microsecond

precision� In this scheme the overhead of interrupt processing is minimal while the timer

resolution is high�

To keep track of the global time� all intervals between interrupts are summed up together�

Although on i����based machines I had to use some clever tricks for this to work correctly�

most other modern hardware platforms provide a software�readable global time counter�

The timer interface allows the scheduler to obtain the current time and to register

functions to be called at particular moments�

Periodic interrupts are simulated for Linux� With soft interrupts it is particularly easy�

	�

to imitate an interrupt request� a bit in the pending interrupts mask is set� On the next

soft return from interrupt� or soft sti� the handler will be invoked�

The interval timer use in Real�Time Linux has its share of problems� Reprogramming

the ���� timer on PCs takes a long time because the timer is not on the processor chip�

Fortunately� most modern CPUs� e� g�� Pentiums �	
�� have timers on�chip in addition to

the �����

��� Interprocess Communication

Since the Linux kernel can be preempted by a real�time task at any moment� no Linux

routine can safely be called from real�time tasks� However� some communication mechanism

must be present� Simple FIFO bu�ers are used in RT�Linux for moving information between

Linux processes or the Linux kernel and real�time processes� We will call this bu�ers real�

time FIFOs to distinguish them from the UNIX IPC facility by the same name�

RT�FIFO bu�ers are allocated in the kernel address space� They are referred to by

integer numbers� There is a static limit on the number of RT�FIFOs that can be changed

during kernel recompilation�

The real�time task interface to RT�FIFOs includes creation� destruction� reading and

writing functions �Appendix A�� Reads and writes are atomic and do not block� Non�

blocking avoids the priority inversion problem �
	��

Linux user processes� on the other hand� see RT�FIFOs as ordinary character devices�

Unlike the special system call interface used in a previous design� the character device

interface gives the users full power of UNIX API for communication with real�time tasks�

Chapter �

Applications

��� Application Structure

One of the assumptions made during the design of Real�Time Linux is that each application

should be split into real�time and non�real�time parts� I will call the latter the user part since

it executes in the user space� The real�time part is as simple as possible� It only includes the

code that is directly time�critical� Low�level communication with hardware often belongs

in the real�time part since most hardware imposes timing constraints on the program� The

user part� on the other hand� implements most of the data processing� including distributing

and archiving of data and user interfaces� The two parts communicate using data bu�ers�

Figure ��	 shows the data �ow in a typical real�time application according to this model�

��� PC Speaker Driver

Let us consider an improved version of the sound�generating program from Chapter
� This

version will implement a primitive �dev�audio�type interface to the internal PC speaker

rather than simply playing one note�

Note that there already exists a Linux driver for the PC speaker�� It has much more

features than the one described here� However� it su�ers from the high interrupt latency

�ftp���ftp�informatik�hu�berlin�de�pub�os�linux�hu�sound�

	�

�

RT-Process
X-Window System

User Process
RT-FIFO

RT-FIFO

Display Disk Network Peripheral Device

Linux Kernel

Figure ��	� Data Flow in an Application

problem described in Chapter
� The driver author notes� for instance� that the driver only

plays well when there are no disk accesses� Our driver is free of this problem�

The �dev�audio device is a character one� In its simplest form it accepts a stream of

logarithmically encoded �ulaw �encoded� sound samples� and plays the sound� The samples

are usually one byte long� and the most common sampling rate is ���� Hz� On some

machines the hardware bu�ers the data sent to the speaker� This allows non�real�time

systems to play the sound smoothly� On a PC� however� the internal speaker can only be

controlled by toggling a bit in one of the I�O ports� This imposes tight timing constraints

on the program�

The speaker driver code can be found in Appendix B� In the initialization routine the

driver creates an RT�FIFO� and installs a handler for interrupts from the CMOS clock� The

clock is then programmed to generate interrupts at �	�
 Hz rate� which is close enough to

� kHz� In the handler� an attempt is made to read a sound sample from the RT�FIFO� If

successful� the ��bit ulaw�encoded sample is reduced to 	 bit� and the speaker is turned on

or o� accordingly�

The driver can be used from the shell command line as follows�

cat linux�au ��dev�rtf�

	

where �dev�rtf� refers to the real�time FIFO created by the driver�

The driver does not use a real�time scheduler � mainly for e�ciency reasons� Given

the high frequency of the task� scheduling and reprogramming of the timer would incur

overheads unacceptable on slow machines�

��� Real World Applications

In this section I will describe several practical applications of Real�Time Linux�

The �rst one is that of Harald Stauss� from the department of physiology at the Hum�

boldt University in Berlin� Germany� He has implemented a system for the recording and

display of hemodynamic measurements in rats� It uses an analog�to�digital converter card

to acquire the signals from sensors� The card based on the MAX	�
BCPP chip has eight

	
�bit channels that are multiplexed to one serial line connected to the serial port of the

computer�

The system runs under Real�Time Linux and consists of a real�time task and a user

process� The real�time task polls the card and passes the received data through an RT�

FIFO to the user process� The process records the data to a �le and at the same time

displays it graphically in a Motif drawing widget� Mr� Stauss reports that the system is

able to reliably acquire data with the total sampling rate of ���� Hz on a i������MHz�

based machine� On the same computer� Labtech Notebook for DOS� a commercial data

acquisition program� could only provide sampling rates of less than ��� Hz�

Bill Crum at New Mexico Tech has developed an embedded control and monitoring

software for the Tech Sunrayce car ���� The system speci�cation required data collection

from � sensors with total sampling rate of �� Hz� The needed response times ranged

from
�� to ��� milliseconds� These requirements were satis�ed by using one real�time task

executing with ���	
� seconds period on a
� MHz i����based computer running Real�Time

Linux�

To facilitate the debugging of the system� Bill Crum has written a set of programs

�h��	
bkr�rz�hu�berlin�de

that he describes as an �engineering workbench�� The programs simulate tools commonly

found in electrical engineering laboratories� an oscilloscope� a logic analyzer� and a signal

generator� The complex uses a data acquisition card that provides analog and digital I�O�

Real�time tasks are used to communicate with the card� and Linux processes implement

graphical interfaces using the Qt widget set�

There are several other applications� A task running under Real�Time Linux is used for

real�time communication with the PHANToM� a force feedback device�� This is a part of

a system that creates virtual worlds� The system allows users to navigate through these

worlds� to feel and manipulate objects� Dan Samber� from Mount Sinai Medical School in

New York City uses Real�Time Linux to reliably communicate with a patient monitor over

a serial line for recording and display of physiological parameters�

�http���tesla�braintools�org�phantom�dev�html
�dan�camelot�mssm�edu

Chapter �

Experimental Results

In order to measure the performance of Real�Time Linux� I have conducted several exper�

iments� The experiments were performed on two IBM PC compatible computers running

Linux version
���
� and Real�Time Linux version ���a� The results are summarized in

Table ��	�

To measure the maximum interrupt latency� an additional machine running Real�Time

Linux �Machine 	� was used to send interrupt requests to the machine being tested �Machine

� and to measure the response time of the latter �Figure ��	��

The D� output of the parallel port of Machine 	 is connected to the ACK parallel port input

of Machine
� When the ACK input goes from a logic one to logic zero� an interrupt request

is sent to the processor� To provide feedback� the D� output of Machine
 is connected to

a parallel port input �PE� on Machine 	�

D0

PE

ACK

D0

Machine 1 Machine 2

Figure ��	� Measuring Interrupt Latency

�

�

System Interrupt Latency ��s� Scheduling precision ��s�

Machine A� Linux

� �

Machine A� RT�Linux �� 	��

Machine B� Linux
��� �

Machine B� RT�Linux �� ��

Machine A� Intel ����� �� MHz� ISA bus� 	� MB of RAM� Western Digital Caviar
���

IDE hard drive� �C��� Ethernet card�

Machine B� Intel Pentium 	
� MHz� PCI bus� �
 MB of RAM� EATA�DMA DPT SCSI

adapter� Conner CP��
�� SCSI hard drive� NE
��� Ethernet card �in an ISA slot��

Table ��	� Performance Measurements Results

The measurement is performed as follows� A real�time process on Machine 	 records

the current time� sends a pulse to the D� output� and enters a busy loop waiting for the PE

input to change� An interrupt request is sent to the CPU of Machine
� From an interrupt

handler �both real�time and ordinary Linux handlers were used� the output D� is toggled�

The real�time process on Machine 	 exits the busy loop� obtains the current time� and

computes how long it took Machine
 to respond� This sequence is performed periodically

over a substantial interval of time� The maximum response time encountered is taken to be

an estimate of the worst�case interrupt latency�

As seen from Table ��	� the interrupt handling latency in plain Linux is substantially

higher than in Real�Time Linux� Moreover� it is quite possible that some device drivers

that I have not used disable interrupts for longer periods� further increasing Linux interrupt

processing latency�

To measure scheduling precision a periodic real�time task was run� On each wake�up

the current time was obtained and compared to the estimate� Maximum deviations were

recorded�

I found it impossible to reliably run periodic tasks as standard Linux processes� partly

�

because Linux does not provide a periodic timers facility� and also because of other problems

described in Chapter
�

During all tests the system was heavily loaded with disk and network I�O operations�

Although device drivers in Real�Time Linux do not disable hardware interrupts� heavy I�O

does increase interrupt latency� This fact can be attributed to the DMA cycle stealing�

Several stress tests have also been performed� In one of them the system has successfully

performed a backup of a local �lesystem over the local network� scheduling two periodic real�

time tasks each with 	 millisecond period at the same time� This experiment demonstrates

that the presence of a real�time system has no adverse e�ect on the functioning of the Linux

kernel�

Overall� the results show that Real�Time Linux is a viable platform for hard real�time

processing�

Chapter �

Future Directions

This thesis has described a way to transform a time�sharing operating system into a hard

real�time one� One case study was described in detail� Real�Time Linux� a hard real�time

operating system based on Linux� It has been shown that modi�cations made to the host

operating system can be kept to minimum� while allowing to achieve good results with

respect to interrupt latency and predictability�

There are several directions in which the future work can go� One of them is to explore

how the ideas of Real�Time Linux can be applied to the structuring of operating system

kernels�

Most device drivers have real�time constraints� These constrains are imposed by com�

puter peripherals� A good example is serial communication hardware� Characters have to

be transmitted or received at a given rate� If the rate is� say� ����� baud �a fairly typical

value�� using � bits of data for each character plus � bits of control information gives ����

characters per second� This leaves the operating system less than ��� microseconds to pro�

cess each character� Although not critical during transmission� this timing requirement has

to be satis�ed while receiving characters to avoid losing them� Even though modern serial

communication hardware has bu�ers� it does not completely eliminate these constraints�

However� in most modern UNIX systems� and in Linux in particular� real�time hard�

ware requirements are not dealt with explicitly� Rather� satisfaction of timing constraints

�

rests on the global knowledge about the maximum interrupt latency and the skill of kernel

programmers to decide when it is needed and�or safe to disable or enable interrupts� As a

result� a timing error made by a programmer in a hard disk driver can cause the serial port

hardware to miss characters�

Real�Time Linux provides a way to solve this problem� Real�time requirements of the

drivers should be made explicit and moved into the RT�kernel� This would allow them to

utilize a low latency of Real�Time Linux� and to be independent of the non�real�time parts

of the kernel� Moreover� this would solve a potential problem of undesirable interaction

between the real�time kernel and the Linux kernel� Linux device drivers were written with

an assumption that they will never be interrupted once interrupts have been disabled�

This assumption is incorrect under Real�Time Linux� Although not encountered during

experiments� it is conceivable that a driver can be interrupted at the wrong moment with

a hardware error as a result�

Another possible direction of the future work concerns communications between real�

time tasks with the rest of the system� Real�time FIFO bu�ers proved to be one satisfactory

solution� There is a problem� however� any bu�er can over�ow or under�ow� The former

may result in a loss of data� while the latter may lead to a situation in which all real�time

tasks are scheduled correctly� but deadlines are missed due to a lack of data� Fine�grain

scheduling �	�� is one way to solve this problem� Fine�grain scheduling gives higher priorities

to processes that have more data than the others in their input or output bu�ers�

Lock�free synchronization methods ��� �	�� can be used to provide various data exchange

methods in addition to real�time FIFO bu�ers� Priority queues are also desirable in some

applications�

Finally� new features can be added to the real�time kernel� Di�erent scheduling policies

come to mind �rst� followed by static schedulability analysis tools� Such tools can potentially

solve the problem of locking the Linux kernel out of the CPU� The use of rate�monotonic

analysis �	� can make it possible to guarantee some �xed fraction of the CPU time to

Linux�

Bibliography

�	� Michael Beck� Harald B�ohme� et al� LINUX Kernel Internals� Addison�Wesley� 	����

�
� Alan Burns� Scheduling hard real�time systems� A review� Software Engineering

Journal� �����		��	
�� 	��	�

��� Bill Crum� Data acquisition and control using Real�Time Linux� Master�s thesis� New

Mexico Institute of Mining and Technology� 	���

��� Borko Furht� Dan Grostick� et al� Real�time UNIX systems� design and application

guide� Kluwer Academic Publishers Group� Norwell� MA� USA� 	��	�

��� Bill O� Gallmeister� POSIX�� � Programming for the Real World� O�Reilly � Asso�

ciates� 	����

��� P� M� Herlihy� Wait�free synchronization� ACM Transactions on Programming Lan�

guages and Systems� 	��	�� January 	��	�

�� Dan Hildebrand� Implementing the Win�
 API over a POSIX realtime OS� Available

from http���www�qnx�com�whitepaper�qnxwin���html�

��� Dan Hildebrand� An architectural overview of QNX� In USENIX Workshop on Micro�

Kernels and Other Kernel Architectures� pages 		��	
�� Seattle� WA� April 	��
�

USENIX�

��� Dan Hildebrand� A microkernel POSIX OS for realtime embedded systems� Technical

report� QNX Software Systems Ltd� 	����

�

�

�	�� IEEE� Information Technology � Portable Operating System Interface �POSIX� �

Part 	� System Application� Program Interface� IEEE
ANSI Std 	����	 	��� Edition�

Order Number SH����
�NYF�

�		� IEEE� Information Technology � Portable Operating System Interface �POSIX� �

Part �� Shell and Utilities� IEEE
ANSI Std 	������	��� � IEEE
ANSI 	�����a�	����

Order Number SH		
��NYF�

�	
� Intel Corporation� Pentium Processor Family Developer�s Manual� Order Number

�	��������

�	�� Intel Corporation� Intel��� �TM� Processor Family� Programmer�s Reference Manual�

	���� Order Number
����������

�	�� Markus Kuhn� A vision for Linux
�
 � POSIX�	b compatibility and real�time sup�

port� Available from ftp���ftp�informatik�uni�erlangen�de�local�cip�mskuhn�

misc�linux�posix��b�

�	�� Samuel J� Le er� Marshall Kirk McKusick� Michael J� Karels� and John S� Quarterman�

The Design and Implementation of the ���BSD UNIX Operating System� Addison�Wes�

ley� Reading� MA� USA� 	����

�	�� Jochen Liedtke� On micro�kernel construction� In The Proceedings of the 	�th ACM

Symposium on Operating Systems Principles� December 	����

�	� C�L� Liu and J�W� Layland� Scheduling algorithms for multiprogramming in a hard�

real�time environment� Journal of the ACM�
��	������	� January 	���

�	�� Henry Massalin� Synthesis� An E�cient Implementation of Fundamental Operating

System Services� PhD thesis� Columbia University� 	��
�

�	�� Milan Milenkovi!c� Operating Systems� Concept and Design� McGraw�Hill� 	��
�

�
�� Dennis W� Ritchie and Ken Thompson� The UNIX time�sharing system� Communica�

tions of the Association for Computing Machinery� 	���������� July 	���

��

�
	� Lui Sha� Ragunathan Rajkumar� and John P� Lehoczky� Priority inheritance proto�

cols� An approach to real�time synchronization� IEEE Transactions on Computers�

������		��		��� September 	����

�

� Sang H� Son� editor� Advances In Real�Time Systems� chapter 	�� pages

��
���

Prentice Hall� 	����

�
�� Daniel Stodolsky� J� Bradley Chen� and Brian Bershad� Fast interrupt priority manage�

ment in operating system kernels� In The Proceedings of the �nd USENIX Symposium

on Microkernels and Other Kernel Architectures� USENIX� September 	����

�
�� Andrew S� Tanenbaum� Modern Operating Systems� Prentice Hall� 	��
�

�
�� Martin Timmerman and Jean�Christophe Monfret� Windows NT as real�time OS"

Real�Time Magazine� 	��� Available from http���www�realtime�info�be�encyc�

magazine�articles�winnt�winnt�htm�

�
�� Gabriel A� Wainer� Implementing real�time services in MINIX� Operating Systems

Review�
���������� July 	����

�
� Wind River Systems� Inc�� 	�	� Atlantic Avenue� Alameda� CA ����	�		�� USA�

VxWorks Programmer�s Guide ��	� December 	����

Appendix A

Real�Time Task Interface

The material of this appendix is valid for Real�Time Linux version ����

A�� Task Control

typedef struct rt task struct RT TASK�

Each real�time task is represented by a rt task struct structure� It contains task

state� priority� and other parameters� The structure is opaque�

int rt task init�RT TASK �task� void ��fn	�int data	� int data� int

stack size� int priority	�

Initializes the task structure pointed to by task� fn is the code for the new task#

data is the value to pass to fn on startup# stack size is the stack size to be al�

located for this task� priority is task priority� It ranges from � �the highest� to

RT LOWEST PRIORITY�

int rt task make periodic�RT TASK �task� RTIME start time� RTIME period	�

Marks this task as periodic# if the task is to start execution immediately� the return

value of rt get time�	 can be used as start time�

int rt task delete�RT TASK �task	�

Deactivates the task�

int rt task wait�void	�

Suspends execution of the calling task until the beginning of the next period �for

periodic tasks only��

int rt task suspend�RT TASK �task	�

�	

�

Suspends the task�

int rt task wakeup�RT TASK �task	�

Resumes execution of the task�

void rt use fp�int flag	�

Signals to the scheduler if �oating point context needs to be preserved for this task�

A non�zero value of flag makes the FP context to be saved on each context switch�

The flag value of zero makes the opposite�

typedef long long RTIME�

Time is measured in clock ticks that are system�dependent�

long long RT TICKS PER SEC�

This constant is equal to the amount of clock ticks in one second�

RTIME rt get time�void	�

Returns the amount of time passed from the boot�up until the present moment� This

time does not necessarily correlate with Linux time�

A�� Real�Time FIFOs

int rtf create�unsigned int fifo� int size	�

Creates the FIFO bu�er number fifo� size is the initial size of the bu�er�

int rtf destroy�unsigned int fifo	�

Deactivates the FIFO� The bu�er memory is freed�

int rtf resize�unsigned int fifo� int new size	�

Resizes the FIFO�

int rt fifo put�unsigned int fifo� char �buf� int count	�

Attempts to write count bytes to the FIFO identi�ed by fifo from the bu�er starting

at buf� Returns �	 if there is not enough space in the FIFO# otherwise returns count�

int rt fifo get�unsigned int fifo� char �buf� int count	�

Attempts to read count bytes from from the FIFO identi�ed by fifo to the bu�er

starting at buf� Returns �	 if there is not enough data in the FIFO# otherwise returns

count�

��

int rtf create handler�unsigned int fifo� int ��handler	�unsigned int

fifo		�
Attaches a handler to the FIFO�

The function handler will be called whenever a Linux process reads or writes to the

FIFO� When the handler is called it is passed the FIFO number as the argument�

A�� Interrupts

int request RTirq�unsigned int irq� void ��handler	�void		�

Installs the interrupt handler for interrupt number irq�

void free RTirq�unsigned int irq	�

Uninstalls the interrupt handler for interrupt irq�

Appendix B

The PC Speaker Driver Code

�define MODULE

�include linux�module�h�

�include linux�rtf�h�

�include asm�rt�irq�h�

�include linux�mc������rtc�h�

�define CMOS�IRQ �

static int filter�int x	

static int oldx�

int ret�

if �x � �x��	

x � ��� � x�

�

ret � x � oldx�

oldx � x�

return ret�

�

void intr�handler�void	

��

��

char data�

char temp�

�void	 CMOS�READ�RTC�REG�C	� �� clear IRQ ��

if �rtf�get��� �data� �	 � �	

data � filter�data	�

temp � inb��x��	�

temp �� �xfd�

temp �� �data � �	 ��

outb�temp��x��	� �� out to the speaker ��

�

�

char save�cmos�A�

char save�cmos�B�

int init�module�void	

char ctemp�

rtf�create��� ����	�

�� turn the speaker on� ��

�� set the output of �����s channel � to � ��

outb�p�inb�p��x��	��� �x��	�

outb�p��xb�� �x��	�

outb�p��� �x��	�

outb�p��� �x��	�

request�RTirq�CMOS�IRQ� intr�handler	�

save�cmos�A � CMOS�READ�RTC�REG�A	�

save�cmos�B � CMOS�READ�RTC�REG�B	�

�� �� kHz base� interrupt at �� � Hz ��

CMOS�WRITE��x��� RTC�REG�A	�

�� enable periodic interrupts ��

��

ctemp � CMOS�READ�RTC�REG�B	�

ctemp �� �x�f�

ctemp �� �x���

CMOS�WRITE�ctemp� RTC�REG�B	�

�void	 CMOS�READ�RTC�REG�C	� �� Clear the interrupt ��

return ��

�

void cleanup�module�void	

rtf�destroy��	�

CMOS�WRITE�save�cmos�A� RTC�REG�A	�

CMOS�WRITE�save�cmos�B� RTC�REG�B	�

free�RTirq��	�

�

